Electronic Supplementary Information (ESI)

Europium ion post-functionalized zirconium metal-organic frameworks as a luminescent probe for effectively sensing hydrazine hydrate

Yunhui Yang¹, Xiaofei Liu¹, Dan Yan², Ping Deng¹, Zhiyong Guo^{1,*}, Hongbing Zhan^{1,3}

¹ College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China.

² Testing Center, Fuzhou University, Fuzhou, Fujian, PR China.

³ Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fujian Province, PR China.

Scheme S1 Diagram of gas-sensing measurements for hydrazine vapors

Fig. S1 FT-IR spectra of UiO-66-(COOH)₂, Eu³⁺@UiO-66-(COOH)₂ and Eu³⁺@UiO-66-(COOH)₂ under hydrazine treatment.

Fig. S2 PXRD patterns of the simulated UiO-66, the as-synthesized UiO-66-(COOH)₂ and Eu^{3+} @UiO-66-(COOH)₂.

Fig. S3 N_2 adsorption-desorption isotherms of UiO-66-(COOH)₂ and Eu³⁺@UiO-66-(COOH)₂

Fig. S4 The excitation (λ_{ex} =321 nm, black dotted line) and emission (λ_{em} =611 nm, red solid line) spectra of Eu³⁺@UiO-66-(COOH)₂.

Fig. S5 (a) The emission intensity of $Eu^{3+}@UiO-66-(COOH)_2$ at 611 nm under various components. (100 mM, $\lambda_{ex} = 321$ nm) (b) Photography of the $Eu^{3+}@UiO-66-$

(COOH)₂ in various components under 365 nm UV irradiation.

Fig. S6 PXRD patterns of Eu³⁺@UiO-66-(COOH)₂ towards various analytes in ethanol solution.

Fig. S7 (a) The emission intensity of $Eu^{3+}@UiO-66-(COOH)_2$ before and after hydrazine introduction. (b) Photographs of the $Eu^{3+}@UiO-66-(COOH)_2$ in different

hydrazine exposure time under 365 nm UV irradiation.

Fig. S8 Fluorescent lifetime of $Eu^{3+}@UiO-66-(COOH)_2$ and under different concentrations of hydrazine hydrate.

Fig. S9 UV-vis adsorption spectra of Eu^{3+} @UiO-66-(COOH)₂ before and after hydrazine treatment.

Material	Zr ⁴⁺	Eu ³⁺	Molecular ratio Zr : Eu
Eu ³⁺ @UiO-66-(COOH) ₂	7.532 ppb	27.600 ppb	1:2.20
	82.57 nM	181.62 nM	
Eu ³⁺ @UiO-66-(COOH) ₂ after N ₂ H ₄ treatment	6.610 ppb	24.336 ppb	1:2.21
	72.46 nM	160.14 nM	

 Table S1 The ICP-MS results of Eu³⁺@UiO-66-(COOH)₂.