Electronic Supplementary Information (ESI)

3D Zinc@Carbon fibers composite framework anode for aqueous Zn-MnO₂ batteries

Wei Dong^{a,b}, Ji-Lei Shi^{a,b}, Tai-Shan Wang^{a,b}, Ya-Xia Yin^{a,b}, Chun-Ru Wang^{*a,b}, Yu-Guo Guo^{*a,b}

^a CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education, Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

* Corresponding authors.

E-mail: crwang@iccas.ac.cn; ygguo@iccas.ac.cn

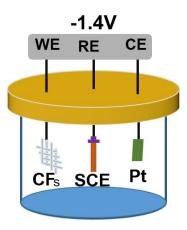


Fig. s1 Schematic illustration for preparation of Zn@CFs electrode in a threeelectrode glass under -1.4V vs. SCE.

The area of hydrophilic carbon clothes was 4 cm² (2cm*2cm, shanghai hesen, 99%) as working electrode, a Pt foil (alfa, 99%) as counter electrode, a SCE as the reference electrode. The electrodeposition voltage was under -1.4 V (vs. SCE) in a solution containing 0.2 mol L⁻¹ ZnSO₄ and 0.5 mol L⁻¹ Na₃C₆H₅O₇·H₂O for 0.5 h. Before deposition, the carbon clothes were immersed in the solution for 10 mins to maintain a better infiltration and eliminate the bubbles.

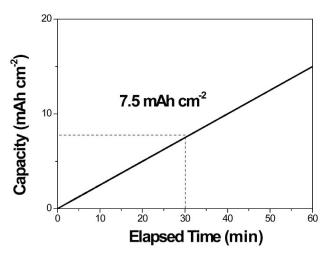


Fig. s2 Deposition capacity curve over time (min)

After electrodeposition for 30 mins under -1.4 V (vs. SCE), the capacity reach to 7.5 mA h cm⁻² and the mass load of Zn was about 9.5 mg cm⁻² (after 30 mins electrodeposition).

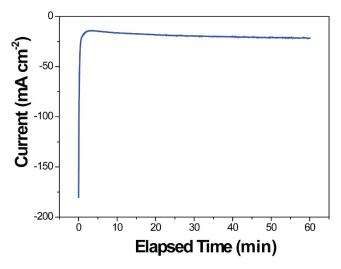
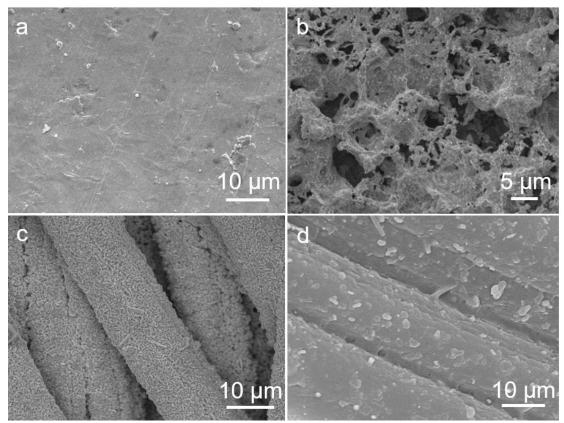



Fig. s3 Deposition current curve over time (min)

Through constant voltage (-1.4V) electrodeposition process, with the increment Zn amount, the electrical resistance of Zn@CFs anode decreased which was reflected by increment of deposition current.

Fig. s4 the morphology changes of a commercialized Zinc plate anode before cycling test (a)and the SEM image of Zn dendrite after cycling(b). The morphology changes of Zn@CFs anode before(c) and after (d) cycling test.

Life span	Cathode material	Initial discharge capacity	Capacity Retention	Electrolyte	Highest rate Current	Energy density (W h kg ⁻¹)	Power density (kW kg ⁻¹)	Reference
140	α-MnO ₂	239.4 mA h g ⁻¹ (1 C)	86.80%	2 M ZnSO ₄ and 0.1 M MnSO ₄	1540 (5 C)	392.2	2.2	This work
150	Prussian Blue	81mA h g ⁻¹ (100 mA g ⁻¹)	85%	$\begin{array}{c} 0.5 \text{ M} \\ \text{Na}_2 \text{SO}_4 \\ \text{and } 0.5 \text{ M} \\ \text{ZnSO}_4 \end{array}$	500 mA g ⁻¹	97.2	0.6	Electrochim. Acta, 2017, 244, 172– 177
125	δ-MnO ₂	123 mA h g ⁻¹ (C/25)	49%	0.5 M AN–Zn (TFSI) ₂ electrolyte	1 C (208 mA g ⁻¹)	116.9	0.21	Chem. Mater., 2017, 29, 4874–4884
80	α-MnO ₂	171.5 mA h g ⁻¹	85.60%	1 M ZnSO4	200 mA g ⁻¹ (about 1.2 C)	248.7	0.29	J. Electrochem. Soc., 2015, 162, A1439- A1444
60	MnO ₂	220 mA h g ⁻¹	40.90%	25 wt% KOH solution	C/20(15. 5 mA h g ⁻¹)	291.5	0.02	Electrochem. Commun., 2017,81, 136-140

Table S1 Comparison of the as-obtained Zn@CFs $|\alpha$ -MnO₂ aqueous battery with previous reported Zn²⁺ ion aqueous battery systems.