Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supplementary information

Synthesis of palladium acetylide-based tubular microporous polymer monolith *via* a self-template approach: a potential precursor of supported palladium nanoparticles for heterogeneous catalysis

Jeongmin Lee and Ji Young Chang*

Department of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 151-744, Korea Email: jichang@snu.ac.kr

Table S1. Porosity data of the Pd-CMP and Pd-CMP₃₀₀.

	S _{BET} ^a (m ² g ⁻¹)	V _{total} ^b (cm ³ g ⁻¹)	V _{micro} c (cm ³ g ⁻¹)	V _{micro} /V _{total}
Pd-CMP	1236	1.04	0.44	0.42
Pd-CMP ₃₀₀	757	0.35	0.29	0.83

^aBET surface areas were calculated from nitrogen adsorption-desorption isotherms. ^bPore volume at $p/p_0 = 0.99$. ^cPore volume at $p/p_0 = 0.1$.

Fig. S1 Photo images of the reaction mixtures at the beginning and after 30 min.

Fig. S2 The SEM images of Pd-CMP with hexagonal open ends.

Fig. S3 SEM images of the filtered products after a reaction time of (a) 5 min and (b) 15 min. (c) XRD patterns of the product after a reaction time of 15 min and the commercial TEACl.

Fig. S4 FT-IR spectra of the sample isolated after a reaction time of 15 min and commercial TEACl.

Fig. S5 SEM images of the polymer isolated after a reaction time of 90 min and washed with methanol.

Fig. S6 XRD pattern of Pd-CMP.

Fig. S7 TGA curves of Pd-CMP measured under a nitrogen and an air atmosphere with a heating rate of 10 °C min⁻¹.

Fig. S8 FT-IR spectrum of Pd-CMP₃₀₀.

Fig. S9 Size distribution histograms of Pd nanoparticles in (a) Pd-CMP₃₀₀ and (b) Pd-CMP₅₀₀

Fig. S10 Powder XRD pattern of Pd-CMP₃₀₀.

Fig. S11 N_2 adsorption-desorption isotherms at 77 K and (b) NLDFT pore size distribution of Pd-CMP₃₀₀.

Fig. S12 TGA curve of Pd-CMP₃₀₀ measured under an air atmosphere with a heating rate of $10 \text{ }^{\circ}\text{C} \text{ min}^{-1}$.

Fig. S13 ¹H NMR spectra of phenylboronic aicd, iodobenzene, biphenyl and the reaction mixture in DMSO- d_{6} .

Fig. S14 Reusability of $Pd-CMP_{300}$ in the Suzuki-Miyaura coupling reaction between iodobenzene and phenylboronic aicd.