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Table S1: Hole and Electron Reorganization Energies (λ) for TBBI, Me-TBBI, TIBN and Me-
TIBN Molecules.

λ (meV)
Molecule

Hole Electron

TBBI 156 186

Me-TBBI 166 187

TIBN 152 200

Me-TIBN 173 216

Figure S1: Schematic figure of side and top views of stacking angle between two adjacent 
monomers in dimer system.
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Figure S2: Highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular 
orbitals (LUMOs) of TBBI, Me-TBBI, TIBN and Me-TIBN molecules.



S4

Part-A: Detailed Derivation

I. Derivation of Carrier’ Drift Energy-Current Density Equation

As described in earlier models by Rühle et al.1 and Kordt et al.2, the total current 
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directly related to the charge transfer rate (k) and applied electric field , respectively. Here, e, )(E
r

v, r, A and τ are the electronic charge, velocity, position, surface area and total simulation time, 

respectively. Numerous studies emphasis that the important of dynamic disorder and electric 

field dependent density flux on carrier transport, which requires the knowledge of cooperativity 

between charge and energy.3-7 In molecular system, various typical interactions (including 

environmental effects) facilitate the momentum and energy redistributions which lead the carrier 

flux along the hopping sites. The detailed momentum-energy distribution analyses with derived 

expressions on charge transport are addressed in this model. 

In this paper, we have proposed the equation of ‘carrier drift energy – current density’ to 

drag the coupled effects of disorder and electric field on current-voltage characteristics.

The momentum of the charge carrier (Pmom) is associated with the charge density  and )(

is described as,
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where, ℏ is reduced Planck constant and e is the electronic charge.

The drift force can be written as, 
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From Eq. S2, the density flux rate can be calculated in the dynamically disordered systems which 

depend on drift force and charge density and can be written as, 
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The continuity equation is

CJ
t


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where, JC  is the current density. 

The current density at particular position can be evaluated using Eq. S3 and S4 and can be 
expressed as, 
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Now, we extend the current density for entire system based on earlier models1, 2 and it can be 
described as

           
              (S6)ijDijDC REeRFeJ 3

23
1

2
23

23
1

2 3
3

3
3 




















hh

where, ,Rand are charge density, drift force, inter-site distance (or inter-molecular , DF DE
distance) and drift energy of carrier, respectively. Here, and  are depending on electric DF DE
field, bias and dynamic fluctuation time; and  associated with doping, gate voltage, chemical 
potential, etc. 

The current is defined as the product of current density and cross section area of charge 
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where, n is the number density, v is the velocity of the particle and  is the charge transfer rate k
or rate coefficient.

Inserting Eq. S6 in Eq. S7, the total current is explicitly defined as,



S6

 
                                (S8)DijD E

n
eRF

n
eI

3
1

2

3
1

2 3
13

3
13
















 hh

Here, 
 
is the inverse of the wave vector. In this study, the wave propagation of carrier 
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is along to the drift force. In this work, we have calculated the current density ( ) for CJ

throughout the system. Here charge is propagating from one molecular site to next molecular site 

through the π-π interaction regime. This interaction cross section is termed as charge transport 

area which determines the carrier flux. In this scenario, we have estimated the total current 

density values at different electric field using drift energy-current density equation.

The simplified Eq. S6 and S8 provide the relationship between current (current density), charge 

density and influenced drift energy (via drift force) on the particle (due to applied field, on-site 

interactions and dynamic disorder, etc.). 
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II. Derivation for Momentum and Energy Redistribution During the Charge 
Transport

The continuity equation is
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where, JC  is the current density. Since, EJC
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where,  is the electrical conductivity and  is the electric field. E
r
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where,  is the electric permittivity of the medium.

Now by substituting the Eq. S11 in to Eq. S2, we get




3
1

23
3

)(













et
tPmom h (S12)

By comparing the Eq. S12 and S1, we can write
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For dynamically disordered systems (e.g., molecular solids, bio-assemblies and other soft matter 

systems), the charge transport can be analyzed by density flux model in which the density is 

exponentially decreasing with the amount of disorder and can be described as,8
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In such disordered systems, the effect of dynamic disorder on electrical conductivity can be 

expressed as,8-10
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where, is the rate of transition probability (or charge transfer rate). Here, the proposed 
t
P
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conductivity equation derived based on the assumption of only the dynamic disorder dependent 

carrier density. According to various earlier studies, the effective charge density of the 

dynamically disordered systems varies with both the disorder and the fluctuation time, leading to 

dynamic localization.3, 4, 6, 11-14 Here, the total conductivity can be calculated from both disorder 

effect on charge density and time-dependent density and can be written as,
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The fluctuation of charge density can be characterized by continuity equation and it can be 

expressed as, 
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where,  is the inverse of the charge transfer time which is equivalent to the rate of transition 1t

probability, . Substituting the Eq. S20 and S15 in Eq. S16, the total conductivity can be 
t
P

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By integrating the above equation on both sides, we get
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where,  is the particle’s initial momentum and  is the traversing momentum with 0,momP )(tPmom

respect to survival probability P(t) at each time steps of simulation. This is the equation of 

momentum distribution.

The kinetic energy of the charge carrier is, 
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By substituting Eq. S24 in Eq. S25, we get
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where,  is the initial kinetic energy. The Eq. S26 describes the kinetic energy distribution 0,KE

based on survival probability of transporting charge carrier. 
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The energy conservation law is 

KK EUEU  0,0 (S27)

where, and  are the final and initial potential energies. U 0U

From Eq. S27, we can separate the potential and kinetic energy parts as
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By substituting Eq. S26 in to Eq. S28, we can write
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Note that here the variation of potential energy during the charge transfer can be estimated by 

charge tunneling along the sequential hopping sites which is characterized by the survival 

probability at each simulation steps. In zero applied field situations, thermal diffusion transport 

would occur in the π-conjugated/stacked molecular solids. Here, the initial kinetic energy can be 

assumed as the thermal energy . Because we assumed the zero field effect at  TkE BK 0,

starting time of simulation (t=0), . Therefore, Eq. S29 becomes 00 tE
r
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bio-assemblies introduces the potential difference, . The charge diffusion would occur 
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transport, the change in potential difference (or voltage) with respect to time is defined as,
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This is the traversing potential with respect to survival probability.
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III. Charge and Energy Dependency on Diffusion Equation

Method 1:

According to the Poisson’s equation, the potential flux can be described as,
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In our study, charge density depends on disorder (see Eq. 11 in Ref. 8), and potential 

difference depends on conjugation length (or π-stacking distance). Therefore, the solution of the 

Poisson equation is 
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where, Vd  is the potential difference, Vi and Vf  are initial and final potential, respectively.

In the present charge transport model, we have assumed the particle motion in the 

random on-site potential which is strongly influenced by the structural fluctuations of molecules. 

The mean values of squared displacement and potential gradient (due to dynamic disorder) are 

crucial in the above Eq. S34. Now the potential Eq. S34 can be modified as, 
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where,  is the mean squared displacement and can be defined as, 2X
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DtX 22  (S37)

where, D is the diffusion coefficient.

Substituting the Eq. S37 in to Eq. S36, we get
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By differentiating the Eq. S38 with respect to time, 
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The above Eq. S40 is similar to the diffusion equation. Now by multiplying an electronic charge 

‘e’ on both sides of the Eq. S40, we get )( deVE 
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Method 2:

Using Poisson Equation, the continuity equation can be expressed as,
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In principle, conductivity is related with the diffusion and the electronic compressibility of the 
materials and can be described as,15
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This energy correlated diffusion Equation is similar in the form of  . Here, n is 2

2
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related to the particle concentration.

Hence, the diffusion transport phenomena depend on both carrier concentration (charge density) 
as well as energy distribution (energy density).
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IV. Entropy Enhanced/(Limited) Recombination/(Diffusion)

The derived Eq. S41 and S48 clearly emphasis that the energy also one of the crucial factors 

(along with charge concentration) in diffusion mechanism. In case of charge transport in real 

materials, one should consider the disorder effect (entropy) due to defect states, trap sites and 

various typical interactions. For organic semiconductors, the charge transfer rate is essentially a 

deterministic factor for charge transport which mainly depends on the rate of shuttling energy 

from one site to another (neighboring) site due to the environmental/external interactions 

(including disorder).   

At constant pressure , the rate of shuttling energy can be written as,)( dP
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The negative sign shows the decrement of shuttling energy with the spatial volume .  SV

In this study, we assume that the change in volume with respect to time is constant. Here, 

the given perturbation has uniformly disturbed the all N-particles in a system in finite interval 

time, leading to thermal averaging effect.  Now the Eq. S50can be modified as,
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The above Eq. S51 infers the effect of perturbation on energy traversing rate, which can be 

regulated by the pressure at uniform spatial extent .
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where, T is the temperature. By reordering the above Eq. S52, and then substituting the 

thermodynamic relations  and  , we get 
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where, Q is the quantity of heat energy and S is the entropy. In thermodynamic regime, the 

energy of the system is expressed in the form of thermal energy, . Here, the rate of TkE B

change of thermal energy during the perturbation (on state of perturbation) can be described as,
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Inserting Eq. S54 in Eq. S53, we can write 
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Integrating on both sides of Eq. S55, we get
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where, is the shuttling (traversing) energy rate due to the S amount of disorder, is 
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the shuttling energy rate due to initial disorder value S0, It is to be noted that the presence of 

disorder in the network decreases the energy transfer rate along the same network route. Here, 

the Eq. S56 precisely tells how the disorder (entropy) plays role for the outdoor response 

functional activities via energy transport. Importantly Eq. S56describes the perturbed response 

energy rate in different amount of disordered systems. We assume that the initial disorder of the 

system is zero (for pure systems), and systems’ final disorder is the non-zero value of S (after 

adding the impurities and mixtures of moieties, etc.), now the Eq. S56 becomes 
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In Eq. S57, left part emphasis the dispersive energy transport which is defined by the product of 

non-dispersive energy transport and inverse exponential entropy weightage for the same system. 

As described in previous study,8 the density flux equation is
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By substituting Eq. S42 and S58 in to Eq. S57, we get the expression for diffusion as,
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where,  is the diffusion coefficient for absence of disorder and  is the disorder dependent 0D SD

diffusion coefficient. This is the equation for diffusion limited by disorder.
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V. Entropy Derivation

The entropy is defined as,16
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where, T is the temperature, VS is the volume (=L3), η is the chemical potential, k is the wave 
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The number of charge carrier for low charge density (or diluted, non-degenerate cases) 
systems can be derived using Maxwell-Boltzmann (MB) distribution function as,
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The carrier density can be written as,
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Inserting the Eq. S66 in to Eq. S63, finally, the obtained entropy equation is
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From Eq. S67, it is clear that the entropy increases with temperature and decreases when 
chemical potential becomes large. Here the chemical potential is termed as charge transport 
energy.
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Part-B: Carrier Flux Study using Momentum and Energy Distribution Analysis

To get clear knowledge on the energy redistribution during the carrier motion, we 

propose the equations for momentum and energy distribution with respect to the survival 

probability of charge (see Eq. S24, S29 and S31 in the section of SI-A for details). According to 

the energy redistribution during charge diffusion, the expected potential between the hopping 

sites is explained by Eq. S31. Using Eq. S24, S29 and S31, the momentum distribution and 

traversing potential are numerically calculated at each time step of KMC simulation and the 

results are plotted in Figure S3. Here the energy of shuttling charge along the charge transfer 

path is characterized by traversing potential. We note that the distributions of momentum and 

traversing potential (due to shuttling of charges) vary concurrently in different applied field 

cases. The results show that there is a field response momentum and energy redistribution along 

the hopping sites, which deals with the cooperative behavior between drift and diffusion 

transport.That is, potential equilibrium rate is originally obtained from the graph of potential 

variation versus time (see Figure S3), which is plotted using Eq. S31. Here, estimated diffusion 

coefficient and potential equilibrium rate are used to calculate the charge density , following )(

Eq. S39. In this connection, the momentum is naturally calculated by charge density using Eq. 

S1, which is used in Eq. S24 to analyze the momentum redistribution with respect to time (see 

Figure S3). From the momentum distribution curve, the drift force, FD (rate of change of 

momentum) is calculated.

At the starting of KMC simulation, we assume that the charge is positioned in initial site 

with 100% probability. After every time step of simulation, the probability of carrier at the initial 

site decreases, as the probability of charge carrier increases in the remaining sequential sites. 
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Generally, the charge distribution (delocalization) velocity dictates the device efficiency. Here, 

the momentum distribution nicely describes the particle distribution velocity (See Figure S2). 

The variation of momentum distribution with time gives rise to force acting on the carrier 

particle and is termed as drift force, FD. We find that the traversing potential decreases with the 

simulation time (see Figure S3), which quantifies the charge relaxation speediness in these 

distorted molecules. This potential variation with time gives the rate of traversing potential and is 

directly proportional to the charge density and charge diffusion (see Eq. S39). The calculated 

drift force and rate of traversing potential for hole and electron dynamics in TBBI and TIBN 

derivatives are summarized in Table 1. Among all the studied molecules, we find large drift 

force of 3.9⨯10-9 N, acting on hole carrier in TBBI molecule even in zero field situations, which 

assures the delocalization property of hole in TBBI molecule. Also, the estimated rate of 

traversing potential for hole transport (~11015 V/s) is quite high in the case of TBBI, even with 

zero applied field.  For the motion of electron carrier in the TBBI in zero electric field, calculated 

drift force and rate of traversing potential are found to be 0.8⨯10-9 N and 0.22⨯1015 V/s, 

respectively, nearly five times lesser than the same for hole. The Me-TBBI has less hole 

transporting ability than TBBI, because the hole energy of Me-TBBI is nearly two times lesser 

than TBBI which is analyzed through the drift force (1.82⨯10-9 N) and the rate of traversing 

potential (0.5⨯1015 V/s). Thus, Me-TBBI is more suitable than TBBI as host-material in OLED 

devices, due to dual mechanism of trap assisted recombination as well as field assisted carrier 

transport. Similarly, Me-TIBN molecule is also a good host-material, which shows the dual 

character, such as, charge receiving capability (from electrodes) and trap assisted recombination 

process, which enhances the quantum efficiency for light emission in OLEDs. In this analysis, it 

is to be noted that the hole carriers are possibly trapped than electrons in Me-TIBN (see Table 1). 
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In the applied field of 5.56⨯10-6 au, the drift forces of hole and electron are 0.15⨯10-9 and 

0.7⨯10-9 N, respectively. From the rate of traversing potential values for hole and electron carrier 

(0.04⨯1015 and 0.18⨯1015 V/s) in Me-TIBN system, it is clear that the hole takes longer time to 

equilibrate in Me-TIBN which shows the possibility of hole trapping nature. In such scenario, the 

opposite charges (electron) get attracted towards the trapped hole site via Columbic nature of 

interaction, which conducts the trap assisted recombination and which can be modulated by the 

application of electric field. 
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Figure S3: The momentum distribution and traversing potential at different applied field of 0, 
7.144⨯103, 1.428⨯104, 2.143⨯104 and 2.857⨯104 V/cm for hole and electron carrier during the 
charge transport in TBBI, Me-TBBI, TIBN and Me-TIBN molecules.

For self-diffusion domain, there is no external field; the obtained drift force and rate of 

traversing potential for charge carrier depend purely on the effect of dynamic disorder. But in the 

case of applied field conditions, the parameters FD and dV/dt depend upon coupled nature of 

electric field and dynamic disorder which determines the cooperative behavior of both drift and 

diffusion mechanism. From Table 1, it has been noted that one can ease to adjust the drift force 

acting on a particle and rate of traversing potential (due to charge carrier shuttling along hopping 

paths) with the aid of external electric field. This drift force is mainly responsible for particle 

flux which is the device current. Here, carrier’ drift energy is defined as . In this ijDD RFE 
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work, the derived carrier drift energy-current density equation (Eq. 11 and S6) is directly 

implemented in Shockley diode equation and the results of our molecular systems have been 

verified. To estimate the current density, the drift force/drift energy and carrier density are the 

required parameters. Thus, along with the calculated rate of traversing potential (or equilibrium 

rate) , using Eq. 8 and Eq. S39, the carrier density is calculated for hole and electron in all t
V



TBBI and TIBN derivatives. By substituting the carrier density and drift force in Eq. S6, the total 

current density is estimated at different fields for all our systems which are provided in Table 1.

Part-C: Site energy Fostered Current Density Analysis and Entropy (via Dispersion) 

Limited Diffusion

In the present model, we have derived carrier’ drift energy-current density(see Eq. 11 and 

S6) to calculate the hole and electron current density at different field assisted site energy gap, 

, for all dynamically disordered TBBI and TIBN molecular solids. In such a way, REeEEij

rrr
.)( 

the calculated current density values are directly implemented in Shockley diode equation (see 

Eq. 10 in main manuscript) to measure the saturation current density  and ideality factor  SJ

(g),which are summarized in Table 1. For instance, in Figure S4, open and closed circles are 

estimated for hole and electron current density by using Eq. 11 and S6 at different values of 

. The continuum solid lines are fitted (see Figure S4) by using Shockley Eq. 10. The )(EEij

r


estimated and g for hole and electron transport of TBBI and TIBN based molecular solids are SJ

summarized in Table 1. In this study, the field assisted site energy gap is termed as the on-site 

potential (or voltage) between adjacent sites, . Here, the assumed on-site REeEEV ij

rrr
.)( 
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potential values are 0, 25, 50, 75 and 100 meV, respectively, due to the applied field of 0, 

7.144⨯103, 1.428⨯104, 2.143⨯104 and 2.857⨯104 V/cm. It is to be noted that the field response 

current density dominates over the self-diffusion current density in zero field conditions. The 

calculated self-diffusive hole and electron current density (at zero field) for TBBI and TIBN 

molecular solids are 4.22, 0.81 and 0.09, 0.69 A/cm2, respectively. Interestingly, both hole and 

electron current densities are significantly increased due to superposed effect of drift-diffusion 

transport in the presence of applied field. The results show that there is a large asymmetry nature 

of hole-electron transport in TBBI and TIBN molecules. In methyl substituted TBBI and TIBN 

molecular solids, the hole-electron asymmetry nature is comparably reduced than TBBI and 

TIBN (see Table 1); it suggests that the Me-TBBI and Me-TIBN are efficient host-materials 

inOLED devices. Several experimental and theoretical investigations illustrate the deviation of 

Einstein’s diffusion-mobility ratio from its original value of  in non-equilibrium cases.17-20 e
Tk B

This deviation has been quantified by the ideality factor (g) which is crucial for J-V 

characteristics study which is presented in Table 1. The saturation current density of hole and 

electron in TBBI are around 10 and 2.2 A/cm2, respectively. But in the case of Me-TBBI, both 

the hole and electron are trapped due to localization property and hence the values are SJ

decreased to 4.34 and 1.85 A/cm2. Due to the carrier trapping property, the system takes long 

time to reach the equilibrium state, which gives enough time to make the electron-hole 

recombination, termed as trap assisted recombination mechanism. In this study, the energetically 

relaxing time of hole and electron in such distorted systems is analyzed by the parameter of rate 

of traversing potential (see Table 1). The charge relaxing event due to disorder weakens the 

charge separation efficiency, but strengthens the charge recombination process. To increase the 
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efficiency of light emission, host molecules should have both the properties (dualism) of charge 

receiving capacity from electrodes and charge recombination. The involved number of hole and 

electron transporting layers in anode and cathode sides, respectively, are also a crucial factor for 

OLED performance. According to the earlier discussion (see Section 3.3 in the main 

Manuscript), the rate coefficient for each hopping (from one layer to next layer) has been 

decreased due to the dispersion (see Figure 6 in main Manuscript), which clearly indicates the 

importance of fixing the number of layers in devices. Based on the above forgoing analysis, Me-

TBBI is found to be a suitable candidature for OLED devices. In TIBN molecular solids, the 

values of hole and electron are 0.22 and 1.86 A/cm2 which show the large charge trapping SJ

ability. That is, the hole and electron receiving capacity from the electrodes of these molecules in 

OLED devices is small. The methyl substitution of TIBN has comparably large hole current than 

TIBN system leading to practical interest in methyl substitution for making better devices (see 

Table 1).
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Figure S4: The hole and electron current density with respect to the electric field dependent site 
energy gap in TBBI, Me-TBBI, TIBN and Me-TIBN molecular aggregates. 

It is noteworthy that the obtained ideality factor (g) for both hole and electron current in 

all TBBI and TIBN derivatives are nearly two and the results confirm the violation of the 

classical Einstein diffusion-mobility equation. For total current density (hole and electron), the 

examined ideality factor, g, also be equal to nearly 2. Here the applied electric field makes the 

system go out of equilibrium and deviates from Einstein relation, which is in agreement with 

earlier reports.19, 21 Also, the presence of site energy disorder in these molecules (see Figure 3 in 

main manuscript), TBBI and TIBN derivatives, takes the deviation from the original Einstein 



S30

relation, . In such non-equilibrium cases, the ideality factor, g becomes greater than 1. e
TkD B



The electric field assisted site energy differences between adjacent sites have been treated as the 

centric issue for charge transport as well as recombination mechanism. Commonly the energetic 

disorder can be quantified by the site energy gap and is the main responsible factor for dual 

mechanism (carrier transport and recombination) in OLED devices. The earlier I-V 

characteristics study of organic homo-junction diodes carried by Harada et al. reveals that the 

calculated ideality factor values are in the range from 1.8 to 2.0.17 Based on the results, we 

conclude the temperature dependence on ideality factor which is actually pertinent to the 

deviation from Einstein relation.17 Generally the amount of disorder is thermodynamically 

related to the parameter entropy (S). In such a way, to understand the carrier dynamics in 

disordered medium, we have proposed the disorder dependent diffusion equation, which can be 

expressed as (see Eq. S59),

                                          (A)







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B
S k

SDD
5
2exp0

where, DS and D0 are the diffusion coefficients with and without disorder, respectively. The 

above entropy-diffusion relation describes how the disorder limits the diffusion transport, 

suggesting the requirement of external bias to activate the carrier transport along the disordered 

lattices. The disorder effect on diffusion transport highly influence the ideality factor which plays 

crucial role in Einstein diffusion-mobility ratio and in Shockley diode equation (see Eq. 9 and 10 

in main Manuscript). Herein, the entropy limited diffusion property stipulates the trap assisted 

recombination mechanism. In principle, the entropy is closely associated with the 

thermoelectricity which is originally relating the coupled nature of charge and heat energy and 
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can be controlled by the chemical potential.22 At high temperature, the expected entropy will be 

high due to the large dispersion of electronic states, at which the charge transfer kinetics will be 

diminished or potentially trapped due to the kinetic energy losses. Based on this ground, we have 

derived the entropy equation for disordered molecular solids as (see Eq. S67), 
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entropy (or disorder) can be decreased with the chemical potential, and increased with the 

thermal energy (kBT). This is to say that the disorder can be activated thermally and can be 

controlled through chemical potential. According to the Eq. A and Eq. B, we have importantly 

noted that the diffusion can be limited by thermal disorder, and can be drifted by chemical 

potential. The limitation of diffusion transport by thermal disorder is explicitly agrees with the 

descriptions by Troisi et al.3, 11, 23 The above detailed analysis clearly show that the diffusion as 

well as the recombination can be regulated by adjusting the entropy with the help of temperature 

and chemical potential. 

We note that the coupled effect of electric field and dynamic disorder determines the 

nature of transport (dispersive or non-dispersive). The large amplitude of site energy fluctuation 

(due to large electric field) leads to dispersion which potentially controls the carrier diffusion and 

simultaneously assists the trap associated recombination mechanism. In such dispersion aided 

recombination, current (or current density) is a pivotal source for quantum efficiency of light 



S32

emission. Here, the probability of electron-hole recombination is achieved through the time 

delayed carrier relaxation process. According to the site-matching analysis (see Eq. 17 in main 

Manuscript), we find the strong localization property at high applied field condition in slow 

fluctuation (almost static disorder) cases. This static disorder decreases the diffusion process and 

is explicitly explained by the disorder limited diffusion, Eq. A. The fast fluctuation (dynamic 

disorder) leads to non-dispersive transport due to large site matching probability termed as 

resonance assisted coherent transport. In such highly dynamic disordered system, the amount of 

static disorder (entropy) will be less and hence diffusion will not be limited which is also 

explained using Eq. A. Also, the on-site fluctuations facilitate the site to site interaction which 

improves the local chemical potential. This locally inducted chemical potential (due to dynamic 

effect) obviously reduces the entropy that is favoring the carrier diffusion (see Eq. A and B). 

From this work, we note that the dual property of charge transport and dual mechanism can be 

modified by adjusting the three scenarios, such as, the strength of fluctuation (static or dynamic 

or in-between), amplitude of applied electric field, fixing the number of layers in OLED devices. 

Also, we importantly find the intercrossing transport, dispersion to non-dispersion and vice-versa 

which can be altered by the field assisted site energy gap and by the structural fluctuation. For 

molecular solids, the above such adjustable nature of dual mechanism (transport and 

recombination) is pivotal source to achieve the good light emission efficiency in OLED devices. 
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Kinetic Monte-Carlo Simulation for Charge Transport Calculation

In KMC simulation, we sample the mean of minimum energy trajectory out of 1000 samples. In 

such way, we have simulated 3000 minimum energy trajectories and finally we get the average 

out of these 3000 converged trajectories. Thus, in our present model, we have simulated 3000000 

samples (=3000⨯1000) to compute the charge transport parameters like, mean squared 

displacement, survival probability and dispersive parameter, etc. In this procedure, the calculated 

parameters by this simulation are quite reliable with respect to the thermal averaging. 

To confirm the thermal equilibrium during the charge propagation along the consequent hopping 

sites, we have tested for one sample calculation with different number trajectories of 7000, 

10000, 40000. In this test study, we have considered the electron transport in TBBI molecules at 

zero applied electric filed and we have estimated the mean squared displacement and dispersive 

parameter. Here, we find that there is no significant variation of these computed charge transport 

parameters.

(A)
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(B)

(C)

Figure S5: The mobility values at zero applied electric field with different simulated trajectories 
of (A) 7000, (B) 10000 and (C) 40000 for electron transport in TBBI molecule.

(A)
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(B)

(C)

Figure S6: The dispersive parameter values at zero applied electric field with different simulated 
trajectories of (A) 7000, (B) 10000 and (C) 40000 for electron transport in TBBI molecule.
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