Supporting Information

Synthesis of silver sulfide nanoparticles and their photodetector applications

Myung Hyun Kang^a, Sung Ho Kim^a, Seunghun Jang^b, Ji Eun Lim^a, Hyunju Chang^b, Ki-Jeong Kong^b, Sung Myung^{*a}, and Joung Kyu Park^{*a}

^aAdvanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, Korea, E-mail: parkjk@krict.re.kr

^bCenter for Molecular Modeling and Simulation, Korea Research Institute of Chemical Technology, Daejeon, Korea

[#]M. H. Kang, S. H. Kim, and S. Jang contributed equally to this work.

Fig. S1. Sonochemical synthesis of Ag_2S NPs. (a) Thermal images of the reaction vial taken by an infrared camera for the synthesis of Ag_2S NPs. The sonicator in the vial heated the reaction solution up to about 160 °C. The ultrasonic irradiation time usually takes 10 ~ 15 minutes for the synthesis of Ag_2S NPs. (b) The temperatures of the local hot spot were plotted. The temperature may reach 160 °C after 5 minutes of sonication.

Fig. S2. Absorption spectrum of Ag₂S NPs. 0.01 g of Ag₂S NPs were dispersed in 10 ml Chloroform and measured using a SolidSpec-3700 UV-Vis-NIR spectrophotometer from Shimadzu.

Fig. S3. XPS spectra of (a) Ag_2S and (b) Li-doped Ag_2S NPs.

	Ag (wt%)	Li (wt%)	S (wt%)
Ag ₂ S	77.9		11.7
Li-doped Ag ₂ S (0.05 mmol)	72.6	0.447	11.5

Fig. S4. Ag-S-Li ratios of the Ag_2S and Li(0.05mmol)-doped Ag_2S NPs by ICP-AES.

Fig. S5. Calculations for the Li substitutions at the Ag sites in the $3\times2\times1$ Ag₂S supercell. Calculated optimized structures for the (a) $321-\text{Li}_{Ag}-1$, (c) $321-\text{Li}_{Ag}-2_{near}$, and (e) $321-\text{Li}_{Ag}-2_{far}$. The gray, yellow, and green balls represent Ag, S, and Li atoms, respectively. Li-Li distances in $321-\text{Li}_{Ag}-2_{near}$ and $321-\text{Li}_{Ag}-2_{far}$ are 3.88 Å and 8.01 Å. Calculated band structures and PDOSs for the (b) $321-\text{Li}_{Ag}-1$, (d) $321-\text{Li}_{Ag}-2_{near}$, and (f) $321-\text{Li}_{Ag}-2_{far}$. The Fermi levels of all calculated systems were set to zero.

Fig. S6. Calculations for the Li interstitials in the $3 \times 2 \times 1$ Ag₂S supercell. Calculated optimized structures for the (a) 321-Li_i-2_{near}, and (c) 321-Li_i-2_{far}. The gray, yellow, and green balls represent Ag, S, and Li atoms, respectively. Li-Li distances in 321-Li_i-2_{near}, and 321-Li_i-2_{far} are 3.48 Å and 8.78 Å. Calculated band structures and PDOSs for the (b) 321-Li_i-2_{near}, and (d) 321-Li_i-2_{far}. The Fermi levels of all calculated systems were set to zero.

Fig. S7. Calculations for the pristine and Li doped $1 \times 1 \times 1$ Ag₂S. Calculated optimized structures for the (a) 111-pristine, (c) 111-Li_i-1, and (e) 111-Li_{Ag}-1. The gray, yellow, and green balls represent Ag, S, and Li atoms, respectively. Calculated band structures and PDOSs for the (b) 111-pristine, (d) 111-Li_i-1, and (f) 111-Li_{Ag}-1. The Fermi levels of all calculated systems were set to zero.

Fig. S8. Atomic force microscopy (AFM) image of Ag₂S NPs density on the SiO₂ substrate.

Fig. S9. The transfer curve $(I_{DS}-V_G)$ of pristine graphene devices at $V_{DS} = 0.1$ V.

Fig. S10. PL emission intensities of Li-doped Ag₂S NPs (a) UV (365 nm) irradiated for 30 days, (b) RT after 30 days, (c) heat-treated to 70 $^{\circ}$ C for 30 days, and (d) 150 $^{\circ}$ C for 30 days.

Fig. S11. Long term air-stability test of photodetectors based on graphene and Ag₂S NPs and Lidoped Ag₂S NPs.