Supporting Information

The one-step preparation of green-emissioned carbon dots based on the deactivator-reducing reagent synergistic effect and the study on their luminescence mechanism

Chunjin Wei^{a,b}, Jun Li^{a,b}, Xincai Xiao^{a,b}, Tong Yue^{a,b}, Dan Zhao^{a,b}*

^a School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China

^b National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430074, P. R. China

Fig. S1. Impacts of different amount of AA on the fluorescence intensity of CDs (AA-PEI).

Fig. S2. Impacts of different molecular weight of PEI on the fluorescence intensity of CDs (AA-

Fig. S3. Impacts of reaction temperature on the fluorescence intensity of CDs_(AA-PEI).

Fig. S4. Impacts of reaction time on the fluorescence intensity of CDs $_{\rm (AA-PEI)}$.

Fig. S5. Impacts of pH values on the fluorescence intensity of CDs $_{(AA-PEI)}$.

L- Ascorbic acid

L-Dehydro ascorbic acid L-Diketogulonic acid Fig. S6. The oxidation process of ascorbic acid.

Fig. S7. Impacts of different amount of PEI on the fluorescence intensity of CDs $_{(AA-PEI-CA)}$.

Fig. S8. Impacts of reaction time on the fluorescence intensity of CDs (AA-PEI-CA).

Fig. S9. IR spectra of $CDs_{(AA-PEI-CA)}$, $CDs_{(AA-PEI)}$ and $CDs_{(PEI-CA)}$.

Fig. S10. Fluorescence decay curves of CDs(AA-PEI-CA) and CDs(AA-PEI).