Supplementary Information

Significant improvement of TiO₂ photocatalytic activity through a controllable ZrO₂ deposition

Xiaofeng Wang, Rajankumar L. Patel[‡], and Xinhua Liang^{*}

Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States

[‡] Current address: Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States

*Corresponding author. *E-mail*: <u>liangxin@mst.edu</u> (Xinhua Liang)

This file includes:

Characterization details

- 1. X-ray diffraction (XRD) analysis
- 2. Raman analysis
- 3. Band gap calculation

Figures S1-S3.

Table S1.

Characterization details

1. XRD analysis.

The crystal structure of TiO₂ and ZrO₂/TiO₂ samples was analyzed by X-ray diffraction (XRD) with filtered Cu K α radiation (λ = 1.5406 Å). The scanning range was 2 θ from 20° to 80°, with a scanning rate of 0.025 °/s. The Scherrer equation was applied to calculate the average crystallite

$$D = \frac{K\lambda}{R\cos\theta}$$

sizes of TiO₂ and ZrO₂/TiO₂ samples: $Bcos\theta$, where B is the half-height width of the diffraction peak of anatase, K=0.89 is a coefficient, θ is the diffraction angle, λ is the X-ray wavelength corresponding to the Cu K α irradiation (1.5406 Å) and D is the average crystallite size of the powder sample [1].

2. Raman analysis.

Raman spectra of TiO₂ and ZrO₂/TiO₂ samples were recorded using a Horiba-Jobin Yvon LabRam spectrometer, equipped with a 17 mW He-Ne laser. Spectra were collected using a $10 \times$ objective lens over a wavenumber range of 200-1000 cm⁻¹. The reported spectra were generated from 10-20 scans of the respective wavenumber range, each taking ten seconds.

3. Band gap calculation.

UV–visible absorbance and diffuse reflectance spectra (DRS) of TiO₂ and ZrO₂/TiO₂ samples were obtained with a UV–visible spectrophotometer (Varian Cary 5). BaSO₄ was used as an absorbance standard in the UV–visible reflectance experiments. The UV–DRS was used to evaluate the band gap of TiO₂ and ZrO₂/TiO₂ samples by plotting $[F(R)*hv]^{1/2}$ against *hv*, where *hv* is the energy of the incident photon and F(R) is the reflection in Kubelka-Munk function [2]. The linear part of the curve was extrapolated to zero reflectance and the band gap energy was derived.

Figure S1. EDS spectrum of 80c-Zr/TiO₂ sample for Figure 3c.

Figure S2. UV-visible diffuse reflectance spectra of TiO₂ and ZrO₂/TiO₂ samples.

Figure S3. Band gap determination of pure TiO₂ nanoparticles and TiO₂ nanoparticles deposited with different cycles of ZrO₂ ALD. Blue and red lines represent experimental and extrapolated data, respectively.

Sample	Preparation method	Pollutant	k _{app} (sample):k _{app} (pure TiO ₂) ^a	References
45c-Zr/TiO ₂	ALD	Methylene blue	10.6	This work
40Ce/TiO ₂	ALD	Methylene blue	3.3	[1]
Pt/TiO ₂	ALD	Methylene blue	3.0	[3]
TZ(10:1)-HS	Functionalized polystyrene spheres	Rhodamine B	3.0	[4]
6.9% ZrO ₂ /TiO ₂	Surfactant self- assembly method	Rhodamine B	2.0	[5]
TiO_2/ZrO_2	A two-step method	Methyl orange	1.8	[6]
10% ZrO ₂ /TiO ₂	Sol-gel	Ethanol	1.5	[7]
12% ZrO ₂ /TiO ₂	Sol-gel	4-chlorophenol	1.3	[8]

 Table S1. Comparison of photocatalytic activity of various photocatalysts.

^a k_{app} is the apparent first order constant.

References

[1] X. Wang, Y. Jin, X. Liang, Significant photocatalytic performance enhancement of TiO_2 by CeO_2 atomic layer deposition, Nanotechnology, 28 (2017) article No. 505709.

[2] S. George, S. Pokhrel, Z. Ji, B.L. Henderson, T. Xia, L. Li, J.I. Zink, A.E. Nel, L. Mädler, Role of Fe doping in tuning the band gap of TiO_2 for the photo-oxidation-induced cytotoxicity paradigm, Journal of the American Chemical Society, 133 (2011) 11270-11278.

[3] Y. Zhou, D.M. King, X. Liang, J. Li, A.W. Weimer, Optimal preparation of Pt/TiO₂ photocatalysts using atomic layer deposition, Applied Catalysis B: Environmental, 101 (2010) 54-60.

[4] C. Sun, L. Liu, L. Qi, H. Li, H. Zhang, C. Li, F. Gao, L. Dong, Efficient fabrication of ZrO_2 doped TiO₂ hollow nanospheres with enhanced photocatalytic activity of rhodamine B degradation, Journal of colloid and interface science, 364 (2011) 288-297.

[5] M. Li, X. Li, G. Jiang, G. He, Hierarchically macro–mesoporous ZrO₂–TiO₂ composites with enhanced photocatalytic activity, Ceramics International, 41 (2015) 5749-5757.

[6] X. Qu, D. Xie, L. Cao, F. Du, Synthesis and characterization of TiO₂/ZrO₂ coaxial core–shell composite nanotubes for photocatalytic applications, Ceramics International, 40 (2014) 12647-12653.

[7] Y. Gnatyuk, N. Smirnova, A. Eremenko, V. Ilyin, Design and photocatalytic activity of mesoporous TiO₂/ZrO₂ thin films, Adsorption Science & Technology, 23 (2005) 497-508.

[8] B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Synthesis and characterization of ZrO_2 –TiO₂ binary oxide semiconductor nanoparticles: application and interparticle electron transfer process, Applied Catalysis A: General, 333 (2007) 264-271.