Supporting Information

Understanding Effects of Precursor Solution Aging in Triple Cation Lead Perovskite

Passarut Boonmongkolras^a, Daehan Kim^a, Esra M. Alhabshi^b, Issam Gereige^b, Byungha Shin^{a*}

^a Department of Material Science and Engineering, Korea Advanced Institute of Technology, Daejeon 34141, Korea ^b Saudi Aramco Research & Development Center, Dhahran 31311, Kingdom of Saudi Arabia

Figure S1: Device performance (a) JV curve and (b) EQE of the best performing cell.

Figure S2: SEM images of the films fabricated from different triple cation lead halide perovskite solution where (a) – (f) are 2, 6, 24, 72, 168, and 720 hr, respectively.

Figure S3: DLS data of the precursor solution containing FAI + MABr + PbI₂ + PbBr₂ with respect to its aging time.

Figure S4: DLS data of the precursor solution containing (a) CsI + FAI + PbI₂, (b) FAI + MABr + PbI₂, and (c) CsI + MABr + PbI₂ with respect to its aging time.

Figure S5: XRD pattern of MAPbl₂Br perovskite film with addition of CsI. The amount of CsI added was equal to the amount added in triple cation precursor solution.

Figure S6: (a) DLS and (b) XRD data of MAPbl₃ with respect to its perovskite precursor solution aging time.

Figure S7: Device distribution of MAPbI₃ perovskite with different precursor solution aging time.

Input Precursors	Cation: Lead: Halide Molar Ratio (A: B: X Molar Ratio)	6 h	24 h	72 h or more
FAI + PbI ₂ + MABr + PbBr ₂ + CsI (Triple-cation Lead Halide)	1.26: 1.30: 3.86	x	0	0
FAI + PbI ₂ + MABr + PbBr ₂	1.20: 1.30: 3.80	0	0	0
FAI + PbBr ₂	1.00: 1.10: 3.20	0	0	0
MABr + PbBr ₂	1.00: 1.10: 3.20	X	0	0
FAI + Pbl ₂	1.00: 1.10: 3.20	0	0	0
MABr + Pbl ₂	1.00: 1.10: 3.20	X	0	0
CsI + FAI + PbI ₂	1.06: 1.10: 3.26	0	x	0
MABr + FAI + Pbl ₂	1.20: 1.10: 3.40	Х	0	0

Table 1: Summary of DLS experiments with different combinations of the precursors. The label "O" indicates the existence of the large aggregates within the precursor solution and "X" indicates no large aggregates.