## **Electronic Supplementary Information**

## Synthesis of self-assembled mesoporous 3D In<sub>2</sub>O<sub>3</sub> hierarchical micro flowers composed of nanosheets and its electrochemical properties

Balasubramaniam Arul Prakasam,<sup>a, b,\*</sup> Manu Lahtinen,<sup>c</sup> Ansssi Peuronen,<sup>c</sup> Govindhasamy Manikandan,<sup>b</sup> Manickavachagam Muruganandham,<sup>d</sup> Mika Sillanpää <sup>a, e</sup>

<sup>a</sup>Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland

<sup>b</sup>Department of Chemistry, Annamalai University, Annamalainagar, 608002, India

<sup>c</sup>Department of Chemistry, Laboratories of Inorganic and Analytical Chemistry, P.O.Box 35, FI-40014, University of Jyväskylä, Finland

<sup>d</sup>Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA-19122, USA

<sup>e</sup>Department of Civil and Environmental Engineering, Florida International University, Miami, FL-33174, USA

E-mail address: arul7777@yahoo.com (B. Arul Prakasam)

<sup>\*</sup> Corresponding author.





Fig. S1. EDX spectrum of hydrothermal product.





Fig. S2. EDX spectrum of calcinated product (In<sub>2</sub>O<sub>3</sub> micro flowers).



Fig. S3. Top: powder X-ray diffraction pattern of hydrothermal product, below: tick marks representing the characteristic Bragg peak positions of  $In_3S_4$ ,  $In(OH)_3$  and  $In_2S_3$  (red, blue and green colors, respectively).



Fig. S4. Top: powder X-ray diffraction pattern of hydrothermal product calcinated at 400 °C for
2h, below: tick marks for characteristic Bragg peak positions of In<sub>2</sub>O<sub>3</sub> and In<sub>3</sub>S<sub>4</sub> (blue and read colors, respectively).



Fig. S5. Schematic formation of In<sub>2</sub>O<sub>3</sub> microflowers.