Renewable biomass derived porous BCN nanosheets and their adsorption and photocatalytic activities for decontamination of organic pollutants

Dan Tu^a, Huiwei Liao^{a, *}, Qiulin Deng^{a,b,*} Xiang Liu^a, Ronggang Shang^a, Xiaoyong Zhang^a

^aSchool of materials science and engineering, Southwest University of Science and Technology,

Mianyang 621010, China

^bJiangsu Provincial Key Laboratory of Palygorskite, Science and Applied Technology, Huaiyin

Institute of Technology, Huaian, 223003, China

*corresponding author E-mail address: <u>liaohw6709@163.com</u>, <u>deng198608@hotmail.com</u>

SUPPORTING INFORMATION

Supplementary Fig. 1 The energy map analyses of BCN-40.

Supplementary Fig. 2 (A) Comparison Photodegradation of RhB with different semiconductor photocatalysts under UV light resource and (B) degradation of phenol under visible light resource. Conditions: catalysts (0.05 g), RhB (0.02 g/L), 25 °C.

Supplementary Fig. 3 XPS spectra of the BN and BC materials. (A) Core-level B 1s. (B) Core-level N 1s. B 1s and N 1s spectra show main binding energies of 190.5 eV, and 398.2 eV, respectively. (C) The Core-level C 1s of BC, which the main binding energies are 284.6 eV and 286.5 eV.

Supplementary Fig. 4 First-order kinetics for RhB with photocatalysts under different light resource, (A): UV light and (B): visible light. Conditions: catalysts (0.05g), RhB (0.02g/L), 25 °C.

Supplementary Table. 1 The BET surface areas of samples					
Entry	Samples	Specific	Total pore	Average pore	
		surface area	volume	Radius(Å)	
		$S_{BET} \left(m^2/g ight)$	(cm^{3}/g)		
1	BC	19.01	0.01	11.25	
2	h-BN	2.99	0.005	35.31	
3	BCN-10	94.27	0.07	14.71	
4	BCN-25	158.83	0.10	12.16	
5	BCN-40	189.96	0.12	12.29	

Samples	BC	BCN-10	BCN-25	BCN-40	BCN-60	h-BN
Zata (mA)						
1	-36.2	-60.7	-52.3	-45.4	-37.9	-83.7
2	-38.8	-43.2	-48.7	-39.6	-38.6	-40.3
3	-36.9	-51.2	-47.5	-42.8	-43.4	-41.1
Average	-37.3	-51.7	-49.5	-41.9	-39.9	-55.0

Supplementary Table. 2 Zeta potential of BC, porous BCN nanosheets and h-BN.

Organic dyes	Catalysts	Rate constant (min ⁻¹)	R ²	
	h-BN	0.00176	0.99416	
	BCN-10	0.00877	0.99699	
RhB	BCN-25	0.01229	0.98717	
UV light	BCN-40	0.02805	0.9910	
	BCN-60	0.01266	09872	
	h-BN	0.00141	0.98401	
	BCN-10	0.00772	0.98527	
RhB	BCN-25	0.01159	0.97762	
Visible light	BCN-40	0.02476	0.97301	
	BCN-60	0.01245	0.9868	

Supplementary Table. 3 Kinetic features of the photocatalysts

Supplementary Table. 4 Comparison with others semiconductor photocatalysts in the

literature.

Photocatalyst	Pollutant	Time (min)	Removal (%)	Light source	Reference
ZnO	RhB	50	65	300 W HgL	46
TaON	RhB	80	34	300 W XL	47
BiOCl	RhB	120	45.3	500 W XL	48
b-PEN	RhB	60	14	300 W XL	49
AgVO ₃	RhB	60	22	UV-vis	50
MoSe ₂	RhB	80	7.3	SSI	51
TiO ₂	RhB	120	40	SSI	52
NiO	RhB	200	33	UV-vis	53
TNSs	RhB	70	68	UV-vis	54
Ag ₃ VO ₄	RhB	6	65	Visible light	55