Electronic Supplementary Information

Doubling the photocatalytic performance of SnO₂ by carbon coating

mixed-phase particles

Qingbo Li*^a, Hongkai Zhao^a, Honggang Sun^b, Xian Zhao^{*a} and Weiliu Fan^{*c}

^aState Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R.
^bChina. E-mails: liqingbo2016@sdu.edu.cn
^bSchool of Machanical, Electrical&Information Engineering, Shandong University, Weihai, 264209, P. R. China
^cSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.

Speical Funds for Postdoctoral of Shangdong Province (Grant no. 201703010) and the Natural Science Foundation of China (grant no. 21771119) is gratefully acknowledged.

Table S1 MO or Phenol adsorption rate of as-prepared photocatalysts

Samples	Adsorption rate/%	
	MO	Phenol
t-SnO ₂	10.36	6.47
to-SnO ₂	10.80	7.09
t-SnO ₂ -C	12.34	8.83
to-SnO ₂ -C	12.88	8.90

Fig. S1 Photocatalytic degradation performance of MO under 320 nm UV light irradiation by 300 W Xe lamp with a band-pass filter.