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Characterization techniques. X-ray diffraction (XRD) patterns were recorded by a Rigaku XRD-

6000 diffractometer, using Cu Kα radiation (λ = 0.1542 nm) at 40 kV, 30 mA. Fourier transform 

infrared (FT-IR) spectra were obtained using a Nicolet IS50 (Thermo) spectrophotometer with 2 

cm−1 resolution. The particle size distribution was carried out using a Malvern Mastersizer 2000 

laser particle size analyzer. UV-vis absorption and transmittance spectra were collected on a 

Shimadzu U-3000 spectrophotometer. Thermogravimetric analysis (TGA) was performed on 

HCT-1 thermal gravimetric analyzer (Beijing Henven Scientific Instument Factory) with the 

temperature range from 20℃ to 700℃ at a heating rate of 10℃/min. The morphology was 

investigated using a scanning electron microscope (SEM; Zeiss SUPRA 55) with the accelerating 

voltage of 20 kV. The (LDH-80/PDMS)n films on quartz glass substrate were engraved a trace on 

the opposite side and steeped into liquid nitrogen for 1 min, followed by a careful cutting. The 

thickness of the films was obtained from the crack area by side-view SEM observation. The 

surface roughness data were obtained by using a NanoScope IIIa atomic force microscope (AFM) 

from Veeco Instruments. The oxygen transmission rate (OTR) was measured using a VAC-V2 gas 

transmission rate testing equipment. The water vapor transmission rate (WVTR) was collected 

using a W3/060 testing system. All the permeability coefficient values were averaged from at least 

five separate films. The grazing incidence X-ray diffraction (GIXRD) measurements were carried 

out in the Shanghai Synchrotron Radiation Facility (SSRF), executed by a X-ray with incident 

angle of 0.15° and exposure time of 60 s. Two-dimensional (2D) GIXRD patterns were obtained 

by a Mar CCD mounted vertically with a distance of ~178 mm to the sample. A FEI Cs-corrected 

Titan 80-300 high resolution transmission electron microscope (HRTEM) was operated at 300 kV 

to detect the orientation of LDH platelets in the hybrid films. The (LDH-80/PDMS)n film was 

embedded into 812 epoxy resin, refrigerated in liquid nitrogen and finally cut into ultrathin slices 

to obtain the samples for TEM observation.
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Supplementary Figures

Fig. S1 Chemical structural formula of Tween 80 (w+x+y+z = 20).

Fig. S2 Particle size distribution of LDH-80 nanoplatelets. 
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Fig. S3 Thermogravimetric analysis (TGA) of LDH and LDH-80.

Fig. S4 FT-IR spectrum for physical mixture of LDH and Tween 80.
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Fig. S5 XRD pattern of the (LDH-80/PDMS)15 film.

Fig. S6 Side-view SEM images of (LDH-80/PDMS)n (n = 3−15) films (the image F is reproduced 

from the inset of Fig. 3B, for ease of comparison).
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Fig. S7 The linear relationship between the thickness and bilayer number (n) of (LDH-80/PDMS)n 

(n = 3−15) films.

Fig. S8 SEM image of the (LDH-80/PDMS)15 film on PET substrate after scratching on its surface. 
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Fig. S9 (A) AFM topographical image (5 μm × 5 μm) of (LDH-80/PDMS)15 film and (B) 

respective surface profile along the marked white line in the topographical image.

Fig. S10 AFM topographical images (5 μm × 5 μm) of (A, B) (LDH/PDMS)15 and (C, D) pure 

PDMS film.
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Fig. S11 The UV-vis transmittance spectrum (inset: photograph) of the (LDH/PDMS)15 film.

Fig. S12 OTR and WVTR values of PET substrate, PDMS (with the same thickness as (LDH-

80/PDMS)15 film), (LDH/PDMS)15 and (LDH-80/PDMS)15 film on PET substrate, respectively.

Table S1. Comparison between (LDH-80/PDMS)n film and other reported materials in oxygen and 
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water vapor barrier properties.

Film material WVTR OTR Thickness of coating Ref.

PI/Alns 8.5 \ 702 nm (on PET substrate) 1

Polyimide/TRG 2.0 \ 8.1 μm (free standing) 2

PU/OM 24.5 \ 606 nm (on PP substrate) 3

Nylon/FG 4.6 \ 12.6 μm (on PET substrate) 4

COC/TRGO 0.7 \ 270 nm (free standing) 5

EVOH/exfoliated 
graphite 1.29 \ 863 nm (on PP substrate) 6

F-HG BPSQ 20.3 \ 469 nm (on PET substrate) 7

Surlyn/magnesium oxide 0.07 \ 16.3 μm (free standing) 8

Spider silk 
protein/nanoclay 0.2 2.3 12.5 μm (on copy-paper substrate) 9

(PEI/PAA)50 0.8 \ 19.5 μm (free standing) 10

(PEI/MMT)20 \ 3.0 9.2 μm (on PS substrate) 11

(PVP/MMT)40 \ 3.9 7.1 μm (on PET substrate) 12

Epoxy/Na+-MMT \ 1.0 10.6 μm (on PET substrate) 13

Pullulan/clay \ 1.4 13.4 μm (on PP substrate) 14

(U-mLDH/NBR)20 \ 2.8 1.04 μm (on PET substrate) 15

(CSpH4/CNspH2)15 \ 1.3 15.2 μm (free standing) 16

(Graphene/poly-
electrolyte)20 

\ 0.9 310 nm (free standing) 17

(LDH-80/PDMS)15 ~ 0.05 ~ 0.7 12.95 μm (on PP substrate) This 
work
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Fig. S13 Comparison between (LDH-80/PDMS)n and conventional polymer films used for 

oxygen/water vapor barrier applications.18,19
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