Supporting information

Bi-functional heterogeneous catalysts for carbon dioxide conversion: enhanced performances at low temperature

Adrien Comès, Xavier Collard, Luca Fusaro, Luciano Atzori, M. Giorgia Cutrufello and Carmela Aprile *

Contents :

1.	TEM images of XS-MCM-41 (a), XS-Sn (b) and XS-Zn (c)	S1
2.	Small angle XRD pattern XS-MCM-41, XS-MCM-41-Imi, XS-Sn, XS-Sn-Imi, X	XS-
	Zn and XS-Zn-Imi	S2
3.	N ₂ ads-des and pore size distribution of XS-MCM-41, XS-Sn and XS-Zn	S 3
4.	¹³ C- and ²⁹ Si-CPMAS-NMR of XS-MCM-41-Imi and XS-Zn-Imi	S 4
5.	N ₂ ads-des and pore size distribution of XS-MCM-41 and XS-MCM-41-Imi	S 5

S1 : TEM images of XS-MCM-41 (a), XS-Sn (b) and XS-Zn (c)

S2 Small angle XRD pattern of XS-MCM-41, XS-MCM-41-Imi, XS-Sn, XS-Sn-Imi, XS-Zn and XS-Zn-Imi

S3 N₂ adsorption-desorption isotherm of XS-MCM-41, XS-Sn and XS-Zn and the corresponding pore size distribution determined via BJH method.

S4 ¹³C-CPMAS-NMR of XS-MCM-41-Imi (up-left) and XS-Zn-Imi (up-right) and ²⁹Si-CPMAS-NMR of XS-MCM-41-Imi (down-left) and XS-Zn-Imi (down-right)

S5 N_2 adsorption-desorption isotherm of XS-MCM-41 (up-left) and XS-MCM-41-Imi (down-left) and pore size distribution determined via BJH method of XS-MCM-41 (up-right) plus pore size distribution determined via HK method of XS-MCM-41-Imi (down-right)