Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ heterojunction composite

Muhammad Munir Sajid ${ }^{\text {a, b, c }}$, Sadaf Bashir Khan ${ }^{\text {b }}$, Naveed Akthar Shad ${ }^{\text {a,c, Nasir Amin }}{ }^{\text {a and }}$ Zhengjun Zhang*d

Figure. S1 Show the SEM images of pure (a) BiVO4 and (b) FeVO4
The morphology of pure BiVO4 and FeVO4 was investigated by FESEM JEOL-7001F, in figure S1 the SEM images reveals the nanoparticles and rod like shaped morphology of BiVO4 and FeVO4, respectively.

Figure. S2 Show the N_{2} gas isotherms at 77.5 K of $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ nanocomposite at a different mole ratio at (a) $1: 5$ (b) $1: 2$ (c) 1:1 (d) $5: 1$ and (e) 10:1 the BET surface area and BJH pore size in inset.

We find out existence of hysteresis loop in the all-inclusive $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ nanocomposites, between the adsorption and desorption treat during N_{2} isotherm; as in figure S 1 all the materials belongs different adsorption type of curves to the H_{2} and H_{3} typical hysteresis; at concentration 1:5, 1:1 of $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ corresponds to type III curve of H_{3}, at 1:2 and 5:1 concentration correspond to type II curve of H_{3} and at concentration value 10:1 the type Il curve of H_{2}. The H_{2} and H_{3} type is related to the parallel wall, slit shapes capillaries, particles aggregate and narrow bottle shape either both ends open or closed give lamellar centre structure and slit form pores ${ }^{12}$. The precipitous reduction in desorption isotherm of all $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ flows from to cavitation and percolation.

Crystal Violet $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{ClN}_{3}\right)$ a synthetic dye represents the mixing of tetramethyl, pentamethyl, hexamethyl and pararosanilines and normally utilized in fabric manufactures for colour purposes, has a triarylmethane structure as shown in figure S_{2}. It is toxic in nature as it gives toxic output as carbon monoxide, carbon dioxide, nitrogen oxides and hydrogen chlorides stimulate harmful effects on human, agrarian and on aquatic life ${ }^{34}$.

Figure S3 (a) Structure (b) adsorption spectrum of Crystal violet (CV) used as sample dye

The different mole ratio of $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ heterojunction nanophotocatalyst affects the photocatalytic activity due to surface charge, particle size of nanostructures, it influence the absorption and/or desorption rate of dye which causes of the effect the photocatalytic response of the purposed materials ${ }^{5}$. Figure $\mathrm{S} 3(\mathrm{a}-\mathrm{f})$ shows the spectra recorded for different mole ratios values of $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4} 1: 5,1: 2,1: 1,2: 1,5: 1,10: 1$ during the degradation of crystal violet dye solution at neutral pH value. It shows that at higher concentration of FeVO_{4}, the degrading is higher in the beginning than decreases. When the BiVO_{4} ratio is increased again the photocatalytic activity decreased. The highest degradation efficiency 99.1% at mole ratio 2:1 in 60 mints was recorded. It may be due to optimum ratio of BiVO_{4} and FeVO_{4} for the $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ heterojunction nanophotocatalyst formation or may be due to morphology effect.

re S4 The photocatalytic degradation of Crystal violet dye by $\mathrm{FeVO}_{4}, \mathrm{BiVO}_{4}$ and $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ hetro junction nanophotocatalyst at (a) Pure FeVO_{4}, (b) 1:5, (c) 1:2, (d) 1:1, (e) 2:1, (f) 5:1, (g) $10: 1$ mole ratio and (h) $\mathrm{Pure}^{\mathrm{BiVO}}{ }_{4}$.

From the above result and analysis it is observed that at 1:5 the degradation is 85% in 70 mint, at 1:2, 82 $\%$, at $1: 1,98 \%$, at $2: 1,99.1 \%$, at $5: 1,97 \%$ and at $10: 1$ is 98.6%, the mole ratio $2: 1$ is the optimum concentration for $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ in this study.

Figure. S5 (a) Absorption spectra of CV solution at different concentration of $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ in 10 mL CV solution, for 1 h respectively. (b) Effect of the initial dye concentration on photocatalytic degradation of CV (c) Stability curves of the $\mathrm{BiVO}_{4} / \mathrm{FeVO}_{4}$ photocatalyst for CV dye under visible light

References:

1. D. V. Bavykin, V. N. Parmon, A. A. Lapkin and F. C. Walsh, Journal of Materials Chemistry, 2004, 14, 3370-3377.
2. S. B. Khan, M. Hou, S. Shuang and Z. Zhang, Applied Surface Science, 2017, 400, 184-193.
3. M. F. H. Al-Kadhemy, W. H. Abaas and I. Fakher, Caspian Journal of Applied Sciences Research, 2013, 2.
4. S. Mani and R. N. Bharagava, in Reviews of Environmental Contamination and Toxicology, Springer, 2016, 237, 71-104.
5. L. S. Zhang, T. F. Long, C. Q. Yan, X. C. He, M. L. Cheng and S. Zhong, Advanced Materials Research, 2013, 662, 372-378.
