Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting information

Ag₂O Nanoparticle-Catalyzed Substrate-Controlled Regioselectivities: Direct Access to 3-Ylidenephthalides and Isocoumarins

Sandeep Chaudhary,^{*} Bharti Rajesh K. Shyamlal, Lalit Yadav, Mohit K. Tiwari, Krishan Kumar

Laboratory of Organic and Medicinal Chemistry, Department of Chemistry,

Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur-302017, India.

*Corresponding author. Tel.: +91-0141-2713319; Fax: +91-141-2529029;

E-mail: schaudhary.chy@mnit.ac.in

S. No.	Contents	Page No.
I.	Table 1: Detailed Optimization Table	2
II.	¹ H $\&$ ¹³ C NMR spectral data of all the synthesized compounds 11-22 .	3-35

To be published on Web.

I. Table 1. Detailed Optimization study.

Entry.	Metal.	Additive.	Solvent.	Temp. (^⁰ C).	Time (hr.)	Yield.(%)		
1	Cul		DMF	80	3	10 ^b		
2	Ag ₂ O		DMF	80	3	45		
3	Ag ₂ O	PivOH	DMF	80	3	75		
4	AgOAc	PivOH	DMF	80	3	43		
5	AgCl	PivOH	DMF	80	3	Nil		
6	AgNO ₃	PivOH	DMF	80	3	Nil		
Screening of other metal oxides								
6a	ZnO		DMF	80	3	traces		
6b	CuO		DMF	80	3	traces		
6c	CdO		DMF	80	3	traces		
6d	PbO		DMF	80	3	No reaction		
6e	Al ₂ O ₃		DMF	80	3	No reaction		
6f	CrO ₃		DMF	80	3	No reaction		
6g	NiO		DMF	80	3	No reaction		
6h	MnO ₂		DMF	80	3	No reaction		
6i	Fe ₂ O ₃		DMF	80	3	No reaction		
Optimization with Ag ₂ ONPs								
7	Aq ₂ ONPs	PivOH	DMF	80	3	83		
8	Ag ₂ ONPs	AcOH	DMF	80	3	46		
9	Ag ₂ ONPs	PivOH	DMF	80	24	59		
10	Ag ₂ ONPs	PivOH	DMF	100	3	90		
11		PivOH	DMF	120	3	95		
12	Aq ₂ ONPs	PivOH	DMF	130	3	88		
13	Ag ₂ ONPs	PivOH	DMF	120	1.5	88		
14	Ag ₂ ONPs	PivOH	DMF	120	2	88		
Screening of Solvents								
15.	Aq ₂ ONPs	PivOH	DMSO	80	3	55		
16	Ag ₂ ONPs	PivOH	O-xvlene	80	3	17		
17.	Ag ₂ ONPs	PivOH	Toluene	80	3	25		
18.	Ag ₂ ONPs	PivOH	DCF	80	3	30		
19.	Ag ₂ ONPs	PivOH	1.4-Dioxane	80	3	27		
20.	Ag ₂ ONPs	PivOH	PFG	80	3	No Reaction		
21		PivOH	H ₂ O	80	3	No Reaction		
Screening of basic additives								
22	Ad ₂ ONPs	Na ₂ CO ₂		80	3	No reaction		
23		<u> </u>	DMF	80	3	No reaction		
20.		NaOH	DMF	80	3	No reaction		
25		1 10-phenanthroline	DMF	80	3	No reaction		
27	0.5	DMF	PivOH	80	3	20		
28	0.75	DMF	PivOH	80	3	56		
29	1	DMF	PivOH	80	3	83		
30.		DMF	PivOH	80	3	No Reaction		

II. ¹H NMR and ¹³C NMR Spectral Data of all synthesized compounds 11-21.

Figure 6: ¹³C-NMR spectral data of **11c.**

Figure 10: ¹³C-NMR spectral data of **11e**.

Figure 12: ¹³C-NMR spectral data of **12a**.

Figure 14: ¹³C-NMR spectral data of **12b**.

Figure 16: 13 C-NMR spectral data of **12c**.

Figure 18: ¹³C-NMR spectral data of **12d**.

Figure 22: ¹³C-NMR spectral data of **13b**.

Figure 24: ¹³C-NMR spectral data of **13c**.

Figure 26: ¹³C-NMR spectral data of **13d**.

Figure 30: ¹³C-NMR spectral data of **14b**.

Figure 34: ¹³C-NMR spectral data of **15b**.

Figure 40: ¹³C-NMR spectral data of **17a**.

48.2969 48.2771 48.2771 47.28559 47.93659 47.8714 47.8519 47.8519 47.7527 47.7528 47.6030 47.5638 47.6030 47.5638 47.5558 47.5

Figure 41: ¹H-NMR spectral data of **17b**.

Figure 44: ¹³C-NMR spectral data of **17c**.

8.0752 8.0701 9.0701 9.0701 7.8456 7.78412 7.7374 7.77297 7.77297 7.77297 7.77090 7.77090 7.77090 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.7168 7.717 7.71768 7.717768 7.71768 7.

Figure 52: ¹³C-NMR spectral data of **19a**.

Figure 54: ¹³C-NMR spectral data of **19b**.

-

Figure 58: ¹³C-NMR spectral data of **20b**.

7.8840 -7.8845 -7.8645 -7.8645 -7.8645 -7.6516 -7.6516 -7.6516 -7.6511 -7.6516 -7.6516 -7.6516 -7.6516 -7.6516 -7.6516 -7.6522 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5326 -7.5537 -7.5536 -7.5536 -7.5537 -7.5536 -7.5536 -7.5536 -7.5536 -7.5537 -7.5536 -7.5536 -7.5537 -7.5536 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 -7.5537 -7.5536 -7.5537 -7.5536 -7.5537 5.0958 2.1293 2.1175 2.1175 2.1052 2.0971 2.00839 2.00716 2.00839 2.00716 2.00513 2.0 0.99-0.99-7.0 8.5 8.0 7.5 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 -0.5 4.0 3.5 0.5 0.0 Figure 59: ¹H-NMR spectral data of **21a**. -167.40 -145.23 139.43 134.25 129.02 125.36 119.24 114.57 -9.47 170 10 0 160 140 130 120 80 70 50 20 150 110 100 90 60 40 30

Figure 60: ¹³C-NMR spectral data of **21a**.

Figure 62: ¹³C-NMR spectral data of **21b**.

