Supporting Information for

Aligned N-doped Carbon Nanotube Bundles with Interconnected

Hierarchical Structure as an Efficient Bi-functional Oxygen

Electrocatalyst

Weiliang Tian^{1,3}, Cheng Wang⁵, Ruida Chen^{1,2}, Zhao Cai¹, Daojin Zhou^{1,2}, Yongchao Hao¹, Yingna

Chang^{1,2}, Nana Han², Yaping Li¹, Junfeng Liu¹, Feng Wang^{1,*}, Wen Liu^{1,*}, Haohong Duan^{4,*} and

XiaomingSun^{1,2}

¹ State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China.

² School of Energy, Beijing Advanced Innovation Center for Soft Matter Science, Beijing University of Chemical Technology, Beijing100029, China.

³ Key Laboratory of Chemical Resource Engineering in South Xinjiang, College of Life Science, Tarim University, Alar 843300, China.

⁴ Chemistry Research Laboratory, Department of Chemistry, University of Oxford, OX1 3TA, United Kingdom.

⁵ Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

*Corresponding author (email: wangf@mail.buct.edu.cn (Feng W); haohong.duan@chem.ox.ac.uk (Haohong D); wenliu@mail.buct.edu.cn (Wen Liu))

Experimental section:

The calculation of electron-transfer numbers: The number of electrons involved in the ORR

can be calculated from the Koutecky-Levich (K-L) equation:

(1) $J^{-1}=J_{L}^{-1}+J_{K}^{-1}=(B\omega^{1/2})^{-1}+J_{K}^{-1}$ (2) $B=0.62nFC_{0}(D_{0})^{2/3}v^{-1/6}$ (3) B=nFkCo

```
(4) J_{K^{-1}}=J^{-1}-(0.62nFC_{0}(D_{0})^{2/3}v^{-1/6}\omega^{1/2})^{-1}.
```

Where J is the measured current density, J_k and J_L are the kinetic- and diffusion-limiting current densities, ω is the angular velocity of the disk (ω=2pN, N is the linear rotation speed), n is the overall number of electrons transferred in oxygen reduction, F is the Faraday constant (F=96485 C mol⁻¹), C₀ is the bulk concentration of O₂, (C₀ =1.2x10⁻⁶ mo1 cm⁻³), v is the kinematic viscosity of the electrolyte (v=0.01 cm² s⁻¹), D₀ is the diffusion coefficient of O₂ in 0.1 mol L⁻¹ KOH (1.9x10⁻⁵ cm² s⁻¹). According to equations (1) and (2), the number of electrons transferred (n) can be calculated to be 4.0, which indicates that the H-NCNTs lead to a four-electron-transfer reaction to reduce directly oxygen into OH⁻.

Figure S1. (a) Digital photograph of nature blocks of VMT and L-NCNTs/VMT. (b-d) Typical SEM

images of VMT (b), L-NCNTs/VMT composites (c) and L-NCNTs after removal of VMT (d). (e, f)

HRTEM images of h-NCNTs/Gr/TM (e) and S-NCNTs-C (f).

Figure S2. EDS spectrum for CoFe NPs in h-NCNTs/Gr/TM hybrid.

Figure S3. (a) XPS survey spectra of L-NCNTs, S-NCNTs-C, and h-NCNTs/Gr/TM; (b-d) N 1s binding

energy region of L-NCNTs (b), S-NCNTs-C (c), and h-NCNTs/Gr/TM (d).

Figure S4. (a) ORR and (b) OER tafel plots of h-NCNTs/Gr/TM compared with L-NCNTs, S-NCNTs-C, Pt/C and IrO₂/C. Polarization curves (c) and K-L plots (d) of h-NCNTs/Gr/TM of ORR (Indicating the h-NCNTs/Gr/TM is four-electron-transfer reaction).

Figure S5. The electrochemical impedance spectra of h-NCNTs/Gr/TM, S-NCNTs-C and L-NCNTs.

Figure S6. Graphical depiction of the transportation difference of solvated O_2 in catalyst layer of

Pt/C and h-NCNTs/Gr/TM occurring in ORR.

Figure S7. Investigations of the effect of catalyst's loading amount on ORR performance. (a) 20

wt% Pt/C and (b) h-NCNTs/Gr/TM.

Figure S8. (a) The galvanostatic discharge curve of the primary zinc-air batteries at the current density of 7 mA cm⁻². (b) Specific capacities of the primary zinc-air batteries normalized to the mass of the consumed Zn at the current density of 7 mA cm⁻².

L-NCNTs	Atomic (%)	S-NCNTs-C	Atomic (%)	h-NCNTs/Gr/TM	Atomic (%)
C1s	93.99	C1s	81.68	C1s	88.18
N1s	6.01	N1s	16.91	N1s	9.73
		Fe2p3	1.68	Co2p3	0.97
				Fe2p3	1.12

Table S1. The element content of L-NCNTs, S-NCNTs-C and h-NCNTs/Gr/TM obtained by XPS.

Sample	L-NCNTs	S-NCNTs-C	h-NCNTs/Gr/TM
Specific surface area (m ² g ⁻¹)	73.6	62.6	95.0
Total pore volume (cm ³ g ⁻¹)	0.23	0.15	0.25

 Table S2. Specific surface area and total pore volume of different samples.

Catalysts	Catalyst loading	ORR Half-wave	E _{gap} values	Power	Reference
	for ORR / Zn-air	potential (V vs.	(V@mA cm⁻	density	
	battery (mg cm ⁻	RHE)	²)	(mW cm ⁻²)	
	²)				
Co@N-CNT	0.3728 / 2.5	0.805	N/A	244.0	[1]
Co/N/O tri-doped graphene	0.25 / 0.5	0.95	0.70@1	152	[2]
Co-based metal	N/A	0.721	1.12@5	113.1	[3]
hydroxysulfides					
Cobalt-Based nanocomposites	0.3 / 0.9	0.89	0.91@10	118.27	[4]
FeCo-Nx -carbon nanosheets	N/A	0.85	0.78@10	150	[5]
Co, N-Codoped carbon	0.12 / N/A	0.79	0.752@25	N/A	[6]
nanoframes					
Co-Nx-By-C carbon nanosheets	N/A / 0.5	0.83	0.83@10	100.4	[7]
Strung Co_4N and Intertwined	N/A	0.8	0.84@10	174	[8]
N–C Fibers					
Nanoporous carbon Fiber Films	0.1/0.1	0.8	0.73@10	185	[9]
Transition metal and nitrogen	0.5 / 0.1	0.767	0.94@2	N/A	[10]
co-doped carbon					
This work	0.5 / 2	0.81	0.6@5	81.76	

Table S3. ORR and Zn-air battery performance of some carbon based system.

Reference:

1. H. Wu, X. Jiang, Y. Ye, C. Yan, S. Xie, S. Miao, G. Wang, X. Bao, J. Energy Chem. 2017, 26, 1181.

2. C. Tang, B. Wang, H. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1703185.

3. H. Wang, C. Tang, B. Wang, B. Li, Q Zhang, Adv. Mater. 2017, 29, 1702327.

4. Y. Jiang, Y. Deng, J. Fu, D. U. Lee, R. Liang, Z. P. Cano, Y. Liu, Z. Bai, S. Hwang, L. Yang, D. Su, W. Chu, Z.Chen, *Adv. Energy Mater*. 2018, **8**, 1702900.

5. S. Li, C. Cheng, X. Zhao, J. Schmidt, A. Thomas, Angew. Chem. Int. Ed. 2018, 57, 1856

6. Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao, G. I. N. Waterhouse, L. Wu, C. Tung, T. Zhang, Adv. Energy Mater. 2017, 7, 1700467.

7. Y. Guo, P. Yuan, J. Zhang, Y. Hu, I. S. Amiinu, X. Wang, J. Zhou, H. Xia, Z. Song, Q. Xu, S. Mu, ACS Nano.2018, **12**, 1894..

8. F. Meng , H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 2016, 138, 10226.

9. Q. Liu, Y. Wang, L. Dai, J. Yao, Adv. Mater.2016,28, 3000.

10. B. Li, Y. Chen, X. Ge, J. Chai, X. Zhang, T. S. Andy Hor, G. Du, Z. Liu, H. Zhang, Y. Zong, Nanoscale 2016, 8, 5067.