Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supplementary Information for:

Synthesis of Arrays Containing Porphyrin, Chlorin, and Perylene-Imide Constituents for Panchromatic Light-Harvesting and Charge Separation

Gongfang Hu, Hyun Suk Kang, Amit K. Mandal, Arpita Roy, Christine Kirmaier, David F. Bocian, Dewey Holten, and Jonathan S. Lindsey

Table of Contents

Торіс	Pages
Spectra of new compounds	S2–S50
Analytical SEC traces for arrays and benchmarks	S51–S59
Analytical SEC monitoring of the formation of pentad C-T-PDI	S60

Figure S1. The ¹H NMR spectrum of Zn2-TMS.

Figure S2. The ¹³C NMR spectrum of **Zn2-TMS**.

Sample	$\mathbf{M}_{Theoretical}$	$M_{Experimental}$	Δ M (ppm)	Elemental Composition
	621.14475	621.14281	-3.113 C ₃₇ H ₂₈ N ₄ SiZn	
PHGF-II-ZN	$[M+H]^+$	$[M+H]^+$		C ₃₇ H ₂₈ N ₄ SIZN

PHGF-II-Zn

Figure S3. The ESI-MS spectrum of Zn2-TMS.

Figure S4. The MALDI-MS spectrum of Zn2-TMS.

Figure S5. The ¹H NMR spectrum of **2-TMS**.

Sample	$\mathbf{M}_{Theoretical}$	$\mathbf{M}_{Experimental}$	∆M (ppm)	Elemental Composition
	559.23125	559.23264	2 100	
PHGF-II	$[M+H]^+$	$[M+H]^+$	2.488	C ₃₇ H ₃₀ N ₄ SI

Figure S6. The ESI-MS spectrum of 2-TMS.

Figure S7. The MALDI-MS spectrum of 2-TMS.

Figure S8. The ¹H NMR spectrum of 2-Br₂/TMS.

Figure S9. The ¹³C NMR spectrum of 2-Br₂/TMS.

Figure S10. The ESI-MS spectrum of 2-Br₂/TMS.

Figure S11. The MALDI-MS spectrum of 2-Br₂/TMS.

Figure S12. The ¹H NMR spectrum of Zn4-I/TMS.

Sample	IVI Theoretical	IVI Experimental	дій (ррт)	Elemental composition
ZnP-TMS5I15	747.04139	747.03915	-2.998 C ₃₇ H ₂₇ IN ₄ SiZn	CHINI-Si7n
	$[M+H]^+$	[M+H] ⁺		C37H27HN4SIZH

ZnP-TMS5I15 Experimental and Theoretical Isotopic Distribution for C₃₇H₂₇IN₄SiZn, [M+H]⁺

Figure S13. The ESI-MS spectrum of Zn4-I/TMS.

2

Figure S14. The MALDI-MS spectrum of Zn4-I/TMS.

Figure S15. The ¹H NMR spectrum of Zn4-TMS/TIPS.

Figure S16. The MALDI-MS spectrum of Zn4-TMS/TIPS.

Figure S17. The ¹H NMR spectrum of 4-Br₂/TMS/TIPS.

Figure S18. The ¹³C NMR spectrum of 4-Br₂/TMS/TIPS.

Sample	MTheoretical	$M_{Experimental}$	Δ M (ppm)	Elemental Composition
FbP-	895.18570	895.18357	2 206	
TMS5TIPS15Br2	[M] ⁺	[M] ⁺	-2.380	C48H49DI2IN4SI2

FbP-TMS5TIPS15Br2 Experimental and Theoretical Isotopic Distribution for C48H49Br2N4Si2, [M+H]⁺

Figure S19. The ESI-MS spectrum of 4-Br₂/TMS/TIPS.

Figure S20. The ¹H NMR spectrum of C-Ph.

Figure S21. The ESI-MS spectrum of C-Ph.

Figure S22. The MALDI-MS spectrum of C-Ph.

Figure S23. The ¹H NMR spectrum of 7.

Sample	MTheoretical	M _{Experimental}	Δ M (ppm)	Elemental Composition
	753.12448	753.12351	-1.283	$C_{42}H_{29}IN_2O_4$
PDI-I	[M+H] ⁺	[M+H] ⁺		

MS Data <u>PDI-I Experimental and Theoretical Isotopic Distribution, C₄₂H₂₉IN₂O₄, [M]⁺ and [M+H]⁺</u>

Figure S24. The ESI-MS spectrum of 7.

Figure S25. The ¹H NMR spectrum of PDI-Ph.

Sample	M _{Theoretical}	M _{Experimental}	∆M (ppm)	Elemental Composition
	727.25913	727.25526	-1.204	$C_{50}H_{34}N_2O_4$
PDI	[M+H] ⁺	[M+H] ⁺		

MS Data <u>PDI Experimental and Theoretical Isotopic Distribution for C₅₀H₃₄N₂O₄, [M+H]⁺</u>

Figure S26. The ESI-MS spectrum of PDI-Ph.

Figure S27. The ¹H NMR spectrum of **T-Ph**.

Figure S28. The MALDI-MS spectrum of T-Ph.

Figure S29. The ¹H NMR spectrum of T-Ph-H.

Figure S30. The MALDI-MS spectrum of T-Ph-H.

Figure S31. The ¹H NMR spectrum of T-PDI.

Figure S32. The MALDI-MS spectrum of T-PDI.

Figure S33. The ¹H NMR spectrum of ZnT-PDI.

Figure S34. The MALDI-MS spectrum of ZnT-PDI.

Figure S35. The ¹H NMR spectrum of C-T.

Figure S36. The MALDI-MS spectrum of C-T.

Figure S37. The ¹H NMR spectrum of P-TMS/TIPS.

Figure S38. The ¹³C NMR spectrum of P-TMS/TIPS.

Figure S39. The MALDI-MS spectrum of P-TMS/TIPS.

Figure S40. The ¹H NMR spectrum of C-P-PDI.

Figure S41. The MALDI-MS spectrum of C-P-PDI.

Figure S42. The ¹H NMR spectrum of ZnC-ZnP-PDI.

Figure S43. The MALDI-MS spectrum of ZnC-ZnP-PDI.

Figure S44. The ¹H NMR spectrum of T-TMS/TIPS.

Figure S45. The MALDI-MS spectrum of T-TMS/TIPS.

Figure S46. The ¹H NMR spectrum of ZnP-H/TIPS.

Figure S47. The MALDI-MS spectrum of T-H/PDI.

Figure S48. The ¹H NMR spectrum of C-T-PDI.

Figure S49. The MALDI-MS spectrum of C-T-PDI.

Figure S50. The HPLC trace of C-T.

Figure S51. The HPLC trace of T-H/PDI

Figure S52. The HPLC trace of ZnC-ZnP-PDI.

Figure S53. The HPLC trace of C-T-PDI.

Figure S54. The HPLC trace of T-Ph.

Analysis Method : C:\CHEM32\1\METHODS\GONGFANG AQ SEC.M

Figure S55. The HPLC trace of T-Ph-H.

Figure S56. The HPLC trace of T-PDI.

Figure S57. The HPLC trace of T-TMS/TIPS.

Figure S58. The HPLC trace of ZnT-PDI.

Analytical SEC monitoring of the formation of pentad C-T-PDI.

The Sonogashira coupling reaction of **T-H/PDI** and **5** was monitored with analytical size exclusion chromatography (SEC), as has been done previously with multiporphyrin arrays.^{31,32} The precursor **T-H/PDI** was determined to be 99% pure according to the analytical SEC trace (Figure S59, panel A). After the one-hour reaction, an aliquot of the reaction mixture was analyzed to show four peaks (panel B). The dominant peak was assigned to the unreacted **T-H/PDI** based on the retention time and corroborative MALDI-MS data. The retention time of the purified form of the pentad (panel C) and corroborative MALDI-MS and absorption data revealed that the leading peak in panel B was the desired pentad product. The other two small peaks were presumed to be some tetrapyrrolic impurities.

Figure S59. Analytical SEC traces of (A) **T-H/PDI**, (B) the crude reaction mixture, and (C) purified **C-T-PDI**.