Supplementary Information

3D-Printed Origami Electronics Using Percolative Conductors

Yejin Jo,^{a,b} Du Won Jeong,^a Jeong-O Lee,^a Youngmin Choi,^{a,b,*} Sunho Jeong^{a,b,*}

^aDivision of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 19 Sinseongno, Yuseong-gu, Daejeon 305-600, Korea

^bDepartment of Chemical Convergence Materials, Korea University of Science and Technology (UST), 217 Gajeongno, Yuseong-gu, Daejeon 305-350, Korea

E-mail: youngmin@krict.re.kr (Y. Choi); sjeong@krict.re.kr (S. Jeong)

KEYWORDS: 3D, print, circuit, origami, percolative

Table S1. Values of the storage modulus and viscosity for the 65, 77 and 84 wt% composite

 pastes

	65 wt%	77 wt%	84 wt%
Storage Modulus (Pa)	2,900	32,000	68,500
Viscosity (Pa·s)	578	4,920	12,300

Figure S1. SEM images of the paper types used in this study.

Figure S2. Cross-sectional SEM image of an electrode printed on regular A4 paper using the 84 wt% composite paste.

Figure S3. Photographs showing the measured resistance of electrodes printed on regular A4 paper using the 84 wt% composite paste.

Figure S4. Photographs showing the measured resistance of electrodes printed on regular A4 paper using the MWNT paste.

Movie S1. Motion picture showing the operation of origami-processed electrical circuit.