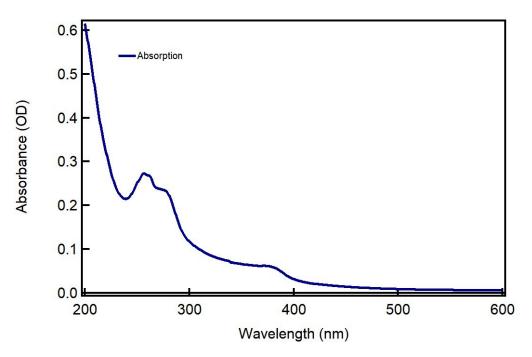

One-pot synthesis of graphene quantum dot and simultaneous nanostructured self-assembly via a novel microwave-assisted method: Impact on triazines removal and efficiency monitoring


Supporting Information

***FIGURES:**

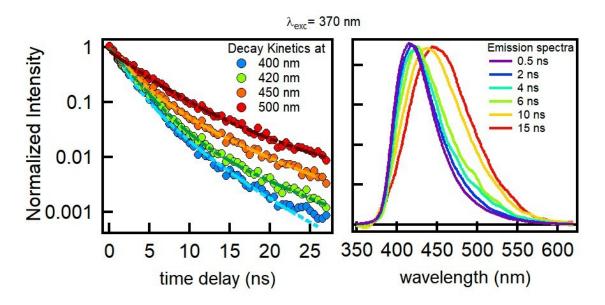
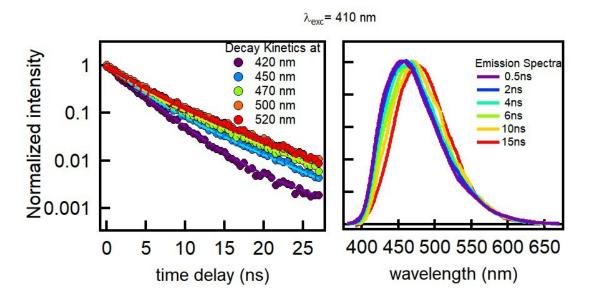
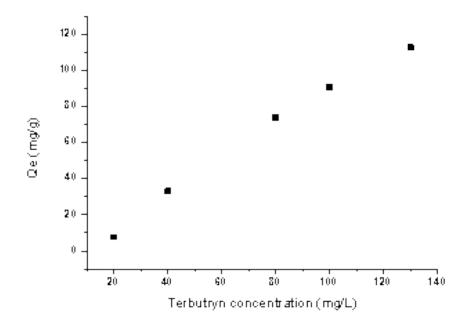
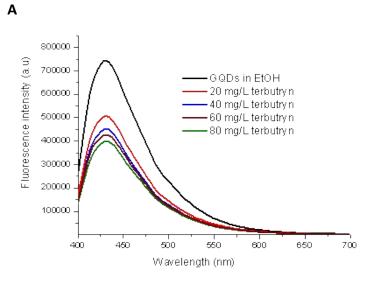
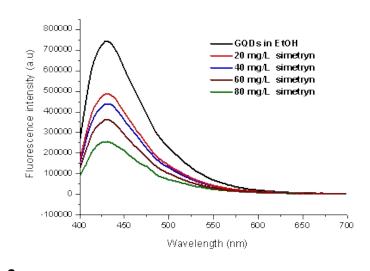


Figure S1. Photographs of the GQD-assemblies in presence of organic solvents under sunlight (A-G, I) and UV light (H, J) at different periods of time after manual stirring. Non polar solvents like hexane and chloroform (CHCl₃), variable polarity aprotic solvents like


ethyl acetate (AcOEt), tetrahydrofurane (THF), acetone and dimethyl sulfoxide (DMSO) and polar protic solvents like ethanol (EtOH) were selected.


Figure S2. Absorption spectra of GQDs in aqueous solution (at 1.32 mg/mL) recorded in a 1 cm cuvette.


Figure S3. Left panel: decay kinetics at different emission wavelengths (indicated in the legend) excited at 370 nm, with the best-fitted curves. Right panel: emission spectra at different delay times from the peak of the laser (indicated in the legend).


Figure S4. Left panel: decay kinetics at different emission wavelengths (indicated in the legend) excited at 410 nm, with the best-fitted curves. Right panel: emission spectra at different delay times from the peak of the laser (indicated in the legend).

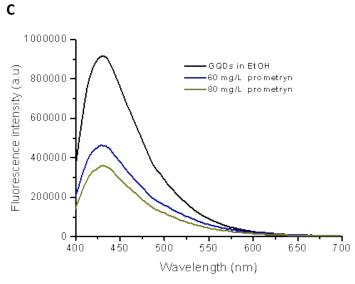


Figure S5. Adsorption histeresis displayed by the aerogel in response to different concentration of terbutryn (1-150 mg/L), calculated by gas chromatography-mass spectrometry. *Qe* is the concentration of the adsorbed solute.

В

Figure S6. Fluorescence behavior of GQD in absence and presence of terbutryn, simetryn and prometryn at different concentrations (0-80 mg/L) in ethanol.

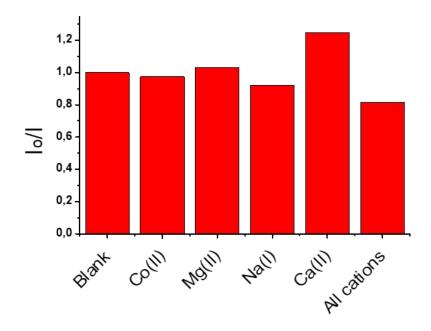


Figure S7. Quenching of the fluorescence of GQDs in solution in presence of diverse cations at concentrations of 10 μ g/mL.

*TABLES:

	Microwave conditions					
Sample	T ₁ /°C	T ₂ /°C	Time of	ratio	Aerogel	
			reaction	urea/glucose	formation	
1	140	80	10	69:1	no	
2	160	90	10	69:1	no	
3	150	85	10	69:1	no	
4	140	80	20	69:1	no	
5	140	80	20	6:1	yes	

Table S1. Microwave synthetic conditions used for preparing GQDs.

Table S2. Main characteristic and roles of carbon-based materials obtained fromsimilar precursors.

Precursors	Synthetic conditions	Use of acid	Carbon nanoparticle formed	Quantum Yield	Porosity	Roles	Ref.
1) Glucose 2) Urea	3 steps: 1) Hydrothermal process of glucose in autoclave. 2)Urea modification. 3)KOH activation	-	Carbon nanosphere	-	Micropores	SORBENT of CO ₂	1
Glucose	Hydrothermal reaction in microwave	-	GQD	7-11%	-	LIGHT CONVERTER	2
Glucose and urea	Microwave oven	-	N-GQD	5.2%	-	As promising LABELLING	3
Glucose and urea	Microwave reaction	HBO ₃	GQD boron nitride BCNO phosphor	27-31%	-	In light emitting diodes (LED)	4
Glucose and urea	Microwave reaction		CDs	0.7-1 %	-	PHOTOCATALYST	5
Glucose and urea	One-step annealing at 900 °C	H ₃ PO ₄	N,P doped nanoporous graphene	-	Nanopores	CATALYST in hydrogen evolution reaction	6
Glucose and urea	Hydrothermal reaction in microwave	H ₃ PO ₄	GQD- assemblies	11-32%	Macropores	SORBENT and SESNSOR of triazine	This work

Table S3. Fit parameters of the decay kinetic curves excited at 370 nm in Figure S2 and the estimated value of the average lifetime.

λ_{em}	τ ₁ (ns)	A1	τ ₂ (ns)	A2	τ _m (ns)
400 nm	2.1	74000	6.3	3000	2.6
420 nm	2.4	94000	7.3	5000	3.1
450 nm	2.6	48000	7.7	6700	4.1
500 nm	3.9	9000	11.1	1200	5.9

Table S4. Fit parameters of the decay kinetic curves excited at 410 nm in Figure S3 and the estimated value of the average lifetime.

λ_{em}	τ ₁ (ns)	A1	τ ₂ (ns)	A2	τ _m (ns)
420 nm	3.3	25000	9.5	700	3.8
450 nm	2.7	31000	6.2	15600	4.6
470 nm	2.6	25000	6.5	19000	5.2
500 nm	3.2	14000	7.0	12000	5.7
520 nm	2.9	9000	7.0	8600	5.8

References

⁶ Hongliang Jiang et al., Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for hydrogen evolution reaction, J. Mater. Chem. A, 2015,3, 12642-12645

¹ Legong Xu et al. Nitrogen-doped porous carbon spheres derived from D-glucose as highly-efficient CO₂ sorbents, RSC Adv., 2015, 5, 37964

² Libin Tang et al. Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano,2012, 5102–5110

³ Hou Xiaobei, Li Yibing, Zhao Chuan Microwave-Assisted Synthesis of Nitrogen-Doped Multi-Layer Graphene Quantum Dots with Oxygen-Rich Functional Groups. Aust. J. Chem. 2015, 69, 357-360.

⁴ Green synthetic strategy of BCNO nanostructure and phosphor-based light – Emitting diodes, J. Luminescence, 2016, 179, 501–510

⁵ Sunita Dey et al., New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content, J. Mat.Res. 2014, 29(3),383-391