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CARBON FIBRE CHARACTERIZATION TECHNIQUES

1. Carbon fibre characterization techniques
Thermogravimetric analysis. TGA measurement was performed with a Shimadzu DTG-

60AH equipment (Kyoto, Japan). Samples were heated under N2 atmosphere from room 

temperature to 900 °C with a heating rate of 20 °C/min.

X-ray photoelectron spectroscopy. XPS analysis was carried out using a Thermo 

Scientific K-Alpha X-ray Photoelectron Spectrometer System with an Al Kα monochromated 

X-ray source (1486.6 eV) at a power of 36 W (12 kV × 3 mA) (Waltham, MA, USA). The 

analysis spot size was 400 µm. Carbon fibre samples were mounted on the sample holder (60 

× 60 mm, 9 sample bars) at each end using a carbon tape and the analyzing area was chosen to 

cover only carbon fibres. Survey spectrum was recorded with a resolution of 1 eV to obtain 

elemental composition. High-resolution C1s, N1s, O1s and F1s spectra were recorded with a 

pass energy of 20 eV and a resolution of 0.1 eV in order to acquire more information about 

the chemical bonds on the surface. Binding energy scale was calibrated to the hydrocarbon 

C1s peak at 285.0 eV. Peak fitting was performed using Thermo Scientific Avantage Software 

version 5.89 (Waltham, MA, USA). The software allows the user to change peak width and 

peak position, background correction was performed with built-in Smart algorithm and peak 

fitting was executed with Powell method using Gauss-Lorentz Mix algorithm.

Raman spectroscopy. Raman spectroscopy was performed with a Thermo Scientific DXR 

Raman Microscope (Waltham, MA, USA) at an excitation wavelength of 780 nm.

Optical microscopy. The mechanism of micromechanical failure at the saturation in the 

fragmentation test was investigated using an Olympus BX50 microscope (Tokyo, Japan) 

equipped with polarizing lens.

Surface topography. Carbon fibre images were recorded on a JSM-7610F Field Emission 

Scanning Electron Microscope (FE-SEM) using an accelerating voltage of 15 kV and a 

working distance of 8 mm (JEOL, Tokyo, Japan). The FE-SEM system was equipped with a 

JEOL EX-230**BU EX-37001 Energy Dispersive X-Ray Analyzer to obtain EDS spectrum 

and perform chemical mapping (JEOL, Tokyo, Japan).

Fracture surfaces were analyzed using a Hitachi S4500 scanning electron microscope with 

an accelerating voltage of 10 kV. Samples were coated with Au-Pd in a Hitachi E1030 ion 

sputter for 60 s (Hitachi, Ltd., Tokyo, Japan).

AFM images were recorded on SII NanoTechnology Nanocute (Hitachi, Ltd., Tokyo, 

Japan) machine.
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REMOVAL OF THE SIZING AGENT

2. Removal of the sizing agent
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Figure S1. (A) TGA analysis of carbon fibre samples with sizing agent on the surface and 

after removal of the sizing agent (cleaned). (B) XPS spectrum of carbon fibre T700 with 

sizing agent on the surface and after cleaning (C). (D) and (E) show AFM images of carbon 

fibre T700 with sizing agent on the surface and after cleaning, respectively.
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SYNTHETIC PROCEDURES

3. Synthetic procedures

Synthesis of XPS-tagged cellulose propionate (CP). 5 g CP (30.8 mmol anhydroglucose 

unit) was dissolved in dichloromethane and 0.430 mL triethylamine (3.08 mmol) was added 

to the system. 0.456 mL 4-(trifluoromethyl)benzoyl chloride (3.08 mmol) was slowly added 

to the dichloromethane solution while the system was cooled using an ice bath. Thereafter, the 

reaction mixture was warmed to room temperature and allowed to react for 12~16 hours 

(overnight reaction). The solution was precipitated in large amount of water/methanol mixture 

(1:1 ratio, 500 mL) and the product was collected using vacuum filtration. The precipitated 

products were further reprecipitated in water/methanol mixture (1:1 ratio, 500 mL) using 

acetone as a good solvent, filtrated, and dried in a vacuum oven at 50 °C for 24 h. The 

resulting product has a DS value of 0.034 in respect to the XPS-tag (Figure S7). FTIR 

spectrum is shown in Figure S6.

Tosylation of XPS-tagged cellulose propionate. 2 g XPS-tagged CP (12.34 mmol 

anhydroglucose unit, DS: 2.79, 0.86 mmol free OH) was dissolved in 100 mL pyridine. 

Subsequently, 7 g tosyl chloride (36 mmol) dissolved in 20 mL pyridine was added dropwise 

to the system within 30 min. The reaction mixture was stirred for 24 h at 8 °C and the product 

was precipitated in ice water, and washed with ethanol under vacuum filtration. The product 

was reprecipitated in distilled water using acetone as a solvent and dried in a vacuum oven at 

50 °C for 24 h. The product has a DS of 0.147 in respect to the tosyl group (1H- and 13C-NMR 

spectra are shown in Figure S8 and S9). FTIR spectrum is shown in Figure S6.

Functionalization of the carbon fibre surface via diazonium species. The diazotization and 

in situ grafting have been carried out according to previously reported procedure that had 

been derived from a synthetic route elaborated for carbon nanotubes.1,2 It has been proven that 

the reaction does not affect detrimentally key single fibre physical parameters.1 The reaction 

medium was gently stirred with small stirring bar to avoid harsh impact with the fibre. A brief 

example of the applied method is given as follows. 30 mL ortho-dichlorobenzene, 15 mL 

acetonitrile and 162.6 mg 4-[(N-Boc)aminomethyl]aniline (0.73 mmol) was bubbled with 

nitrogen for 10 min (degassing process). 25 mg carbon fibre was then immersed in the 

solution under nitrogen atmosphere. To this solution, 170 µL isoamyl nitrite (1.46 mmol) was 

added and the reaction vessel was heated to 50 °C. After 24 h reaction time the solvent was 

decanted and the fibres were washed with dichloromethane until yielding a clear solution. 

Thereafter, the fibres were filtered and rinsed with 200 mL dichloromethane, deionized water 
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and acetone using a Buchner funnel. The fibres were then placed in a vacuum oven at 50 °C 

for 24 h.

Deprotection of Boc-protected amine after the grafting procedure. Deprotection step has 

been performed according to previously reported procedure with functionalized carbon fibre 

samples, which had been proven not to affect detrimentally key physical parameters of single 

fibres.1 The fibres were immersed in 20 mL 2 M anhydrous HCl - 1,4-dioxane solution for 24 

h at room temperature. Thereafter, the reaction medium was decanted and the fibres washed 

with 3 × 150 mL water. To obtain the free amine, the fibres were immersed in NaOH solution 

(2 M, three times 20 mL for 10 min). After that, to remove the base, the fibres were washed 

with 100 mL water five times and rinsed with 150 mL acetone using a Buchner funnel, and 

dried in a vacuum oven at 50 °C for 24 h.

Nucleophilic replacement reaction on the carbon fibre surface. 25 mg carbon fibre was 

immersed in 40 mL DMSO and 0.1 mL triethylamine (0.73 mmol) was added to the system. 

Afterwards, 1 g XPS-tagged tosylated CP dissolved in 20 mL DMSO was measured into the 

vessel. The system was kept at 100 °C for 24 h. The functionalized fibres were filtered and 

washed with 200 mL dichloromethane, deionized water and acetone, respectively. After that, 

the fibres were placed in a vacuum oven at 50 °C for 24 h.

Alkylation of benzoic acid grafted onto the carbon fibre surface. 25 mg functionalized 

fibre was immersed in NaOH solution (2 M, three times 20 mL for 10 min). After that, to 

remove the base the fibres were washed with 50 mL water five times followed by thorough 

washing with acetone and dichloromethane. Thereafter, the fibres were immersed in 20 mL 

toluene and 100 µL benzyl chloride (0.87 mmol) and 2 µL trimethylamine (catalytic amount) 

were added to the system. The reaction vessel was heated to 100 °C. After 24 h reaction time, 

the fibres were vacuum filtered and rinsed with 200 mL dichloromethane, deionized water 

and acetone. The fibres were then placed in a vacuum oven for 24 h. The same procedure has 

been performed with 4-(trifluoromethyl)benzyl chloride.

Acylation of 4-(aminomethyl)benzene grafted onto the carbon fibre surface. 25 mg 

functionalized fibre was immersed in 40 mL dichloromethane. To this solution 117.6 µL 

pyridine (1.46 mmol) and then 169.6 µL benzoyl chloride (1.46 mmol) were added. After 24 

h reaction time, the fibres were vacuum filtered and rinsed with 200 mL dichloromethane, 

deionized water and acetone. The fibres were then placed in a vacuum drying oven for 24 h. 
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The same acylation process was performed with 4-(trifluoromethyl)benzoyl chloride, 

propionyl chloride and decanoyl chloride as acylating agents.

Electrochemical grafting – synthesis of the diazonium salt. Synthesis of the diazonium salt 

for electrochemical grafting experiment was performed according to Kosynkin et al.3 0.2336 g 

NOBF4 (2 mmol) was measured in a reaction vessel under argon atmosphere. Dry acetonitrile 

(10 mL) was then injected through a rubber septum and the vessel was cooled down in an 

acetonitrile/liquid nitrogen bath (-41 °C). Thereafter, 0.44456 g 4-[(N-

Boc)aminomethyl]aniline (2 mmol) dissolved in 10 mL acetonitrile was added over 30 min 

using a syringe. The solution was stirred for 2 hours at -30 °C and then directly used for the 

electrochemical experiments due to the instability of the diazonium species.

Electrochemical grafting – cyclic voltammetry experiment. Cyclic voltammetry 

experiments were performed using a 3-electrode system with an ALS/CHInstruments 

Electrochemical Analyzer Model 1200A and a SVC3 voltammetry cell (ALS Co., Ltd, Tokyo, 

Japan). Ag/Ag+ non-aqueous reference electrode (RE-7, ALS Co., Ltd, Tokyo, Japan) and a 

platinum counter electrode were applied. 25 mg carbon fibre with a length of ~ 20 cm was 

employed as working electrode. One end of the fibre tow was fixed to the terminal using a 

copper tape. The supporting electrolyte was 0.1 M tetrabutylammonium hexafluorophosphate 

in acetonitrile. The working electrode was cycled between 1 and -1 V vs. Ag/AgNO3. 

According to our preliminary optimization experiments, 0.2 V s-1 scan rate and 10 mM 

diazonium salt concentration was applied. Following electrochemical experiments the fibres 

were cleaned thoroughly with 200 mL dichloromethane, deionized water and acetone, and 

placed in a vacuum oven at 50 °C for 24 h.

Experimental procedure for carbon fibre functionalization via acylation reaction
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20 mL thionyl chloride, 1 mL DMF (catalyst) and 25 mg functionalized carbon fibre were 

reacted at 40 °C under argon atmosphere for 6 h. Thereafter, the solvent was decanted and the 

fibres were washed with dichloromethane several times (100 mL). The fibres were then 

immersed in 40 mL dichloromethane and 0.1 mL triethylamine (0.73 mmol) was added to the 

system. Afterwards, 1 g XPS-tagged cellulose propionate dissolved in 40 mL 

dichloromethane was measured into the vessel. The system was kept at 50 °C under argon 

atmosphere for 24 h. The functionalized fibres were filtered and washed with 

dichloromethane, deionized water and acetone, respectively, using a Buchner funnel. After 

that, the fibres were placed in a vacuum oven for 24 h at 50 °C.
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SINGLE FIBRE FRAGMENTATION TEST

4. Single fibre fragmentation test

Figure S2. Preparation of single fibre composites for the fragmentation test.

Preparation of single fibre composite. The pressing temperature was set to 203 °C, 

which had been determined by observing the flow characteristics of CP with a Shimadzu 

CFT-500EX Flowtester (Kyoto, Japan); pressing temperature was chosen to be 10 °C above 

the offset temperature corresponding to a point when the piston moved 5 mm. Two films were 

made first from 1 g CP according to the following procedure. CP sample was placed between 

the clamps of the hot press machine at 203 °C for 7 min using two sheet metals and Kapton 

polyimide films (for obtaining smooth surface of the film), then it was compressed for 3 min 

(45 kN pressing load was applied) and the heating was turned off afterwards. The films were 

removed after the temperature dropped below 193 °C. 3 single carbon fibre filaments were 

fixed on one film with tapes to ensure that they remain straight during processing. The film 

containing single fibres was covered with another one and the same pressing procedure was 

then applied as shown above. Dog-bone shaped specimens (75 mm long) containing one fibre 

in the middle were cut from the composite film.
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Figure S3. Determination of the interfacial shear strength of single fibre composites.



S11

RAMAN SPECTRA

5. Characterization of cellulose derivatives

Figure S4. 1H-NMR spectrum of benzoylated cellulose propionate for DS value 

determination.
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RAMAN SPECTRA

500 1000 1500 2000 2500 3000 3500 4000
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

500 1000 1500 2000 2500 3000 3500 4000
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

500 1000 1500 2000 2500 3000 3500 4000
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

500 1000 1500 2000 2500 3000 3500 4000
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

500 1000 1500
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

500 1000 1500
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

500 1000 1500
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Cellulose propionate XPS-tagged

Tr
an

sm
itt

an
ce

Wavenumber (cm-1)

Cellulose propionate
Tr

an
sm

itt
an

ce
Tr

an
sm

itt
an

ce

Wavenumber (cm-1)

1325 cm-1

CF3 anti-symmetric
 stretching mode

Cellulose propionate XPS-tagged tosylated

Wavenumber (cm-1)

Tosyl group
aromatic 
vibration

Tr
an

sm
itt

an
ce

Wavenumber (cm-1)
Tr

an
sm

itt
an

ce
Tr

an
sm

itt
an

ce

Wavenumber (cm-1)

Wavenumber (cm-1)

Figure S6. FTIR spectra of synthesized cellulose derivatives with insets showing magnified 

spectral regions of special importance.
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RAMAN SPECTRA

Figure S7. 1H-NMR spectrum of XPS-tagged cellulose propionate.
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RAMAN SPECTRA

Figure S8. 1H-NMR spectrum of tosylated XPS-tagged cellulose propionate.
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RAMAN SPECTRA

6. Raman spectra
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Figure S10. Raman spectra with fitting to the D and G band recorded on control and 

functionalized fibres. For the control sample a small A band was also included in the fitting 

referring to amorphous carbon.4
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XPS SPECTRUM

7. XPS spectrum
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SEM IMAGES OF CARBON FIBRE SAMPLES

8. Scanning electron microscopy images of carbon fibre samples

Figure S12. SEM images of control fibre (A), fibre functionalized with cellulose propionate 

(CF2) (B), benzoic acid-functionalized (CF3) (C), and 4-(aminomethyl)benzene-

functionalized (CF1) fibre (D) (5 µm scale).

A B

C D
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CHEMICAL MAPPING

9. Chemical mapping of carbon fibre samples

Figure S13. Chemical mapping performed on control carbon fibre sample. (Please note that 

copper background originates from the sample holder).
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CHEMICAL MAPPING
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CHEMICAL MAPPING
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Figure S15. Chemical mapping performed on 4-(aminomethyl)benzene-functionalized carbon 

fibre sample.
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CHEMICAL MAPPING
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Figure S16. Chemical mapping performed on carbon fibre sample functionalized with 

benzoic acid moiety.
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CHEMICAL MAPPING
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Figure S17. Chemical mapping performed on carbon fibre sample functionalized with 4-[(N-

Boc)aminomethyl]benzene.



S23

CHEMICAL MAPPING
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Figure S18. Chemical mapping performed on functionalized carbon fibre sample (structure is 

shown above).
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CHEMICAL MAPPING
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Figure S19. Chemical mapping performed on functionalized carbon fibre sample (structure is 

shown above).
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CHEMICAL MAPPING
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Figure S20. Chemical mapping performed on functionalized carbon fibre sample (structure is 

shown above).



S26

CHEMICAL MAPPING
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Figure S21. Chemical mapping performed on functionalized carbon fibre sample (structure is 

shown above).
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CHEMICAL MAPPING
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Figure S22. Chemical mapping performed on functionalized carbon fibre sample (structure is 

shown above).
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CHEMICAL MAPPING
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Figure S23. Chemical mapping performed on functionalized carbon fibre sample (structure is 

shown above).
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XPS SPECTRA OF FUNCTIONALIZED CARBON FIBRE DERIVATIVES

10. XPS spectra of functionalized carbon fibre derivatives
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OPTICAL MICROSCOPY

11. Optical microscopy

Figure S26. Optical micrographs of micromechanical failure at the saturation in the 

fragmentation test (samples from Figure 7).
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OPTICAL MICROSCOPY

Figure S27. Optical micrographs of micromechanical failure at the saturation in the 

fragmentation test (samples from Figure 8).
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OPTICAL MICROSCOPY

Figure S28. Optical micrographs of micromechanical failure at the saturation in the 

fragmentation test (samples from Figure 8 and 9).
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SEM – FRACTURE SURFACES

12. Fracture surfaces of single fibre composites

1. Fracture surfaces of two samples after the fragmentation test. Carbon fibre T700SC 

was used as single fibre. After delamination the fibre leaves a hole behind.

2. Fracture surfaces of two samples after the fragmentation test. Single fibre was a 

control sample prepared by cleaning carbon fibre T700 exhaustively (for further details please 

see the manuscript).
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SEM – FRACTURE SURFACES

3. Fracture surfaces after the fragmentation test. Single fibre was functionalized as shown 

below on the structure.
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SEM – FRACTURE SURFACES

5. Fracture surfaces after the fragmentation test. Single fibre was functionalized as shown 

below on the structure.
COOH

Carbon fibre

6. Fracture surfaces after the fragmentation test. Single fibre was functionalized as shown 

below on the structure.

NH O
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7. Fracture surfaces after the fragmentation test. Single fibre was functionalized as shown 

below on the structure.



S36

SEM – FRACTURE SURFACES
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SEM – FRACTURE SURFACES
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SEM – FRACTURE SURFACES
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SEM – FRACTURE SURFACES

13. Fracture surfaces after the fragmentation test. Single fibre was functionalized as shown 

below on the structure using electrochemical grafting procedure.
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CYCLIC VOLTAMMOGRAM

13. Cyclic voltammogram
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Figure S29. Cyclic voltammogram for grafting the corresponding diazonium salt 

(shown in the top-right) on the carbon fibre surface.
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