

A glucose modified filter paper for effective oil/water separation

Zhonglin Luo,^{*abc} Cong Duan,^a Yan Li,^a Yanbin Wang,^{ab} Biaobing Wang^{*ab}

^a School of Material Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, 213164, P.R. China. E-mail: zhonglinluo@cczu.edu.cn; biaobing@cczu.edu.cn

^b Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, Jiangsu, 213164, P.R. China

^c State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200433, P.R. China

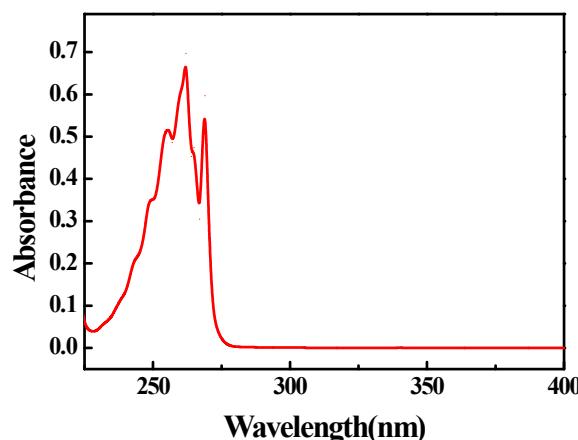


Fig. S1 The UV absorbance of toluene in hexane solution (0.5 g/L).

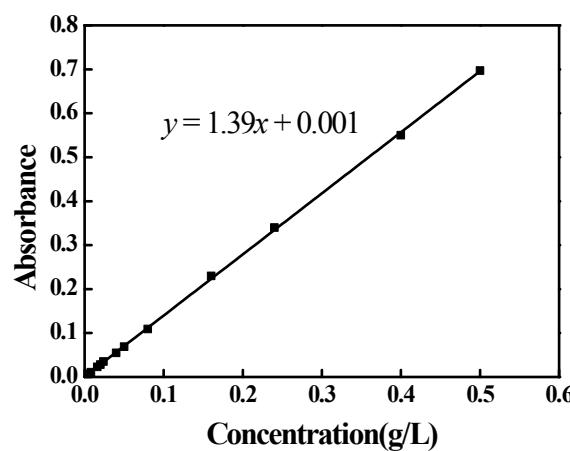


Fig. S2 UV absorbance at 262 nm as a function of toluene concentration in hexane solution.

Fig. S3 The crosslinked network formed by mixing of glucose and glutaraldehyde solution.

Fig. S4 A modified filter paper with an area of 2.54 cm^2 could support a column of toluene 0.72 m, a column of hexane 0.83 m, and a column of petroleum ether 0.90 m in height, respectively.

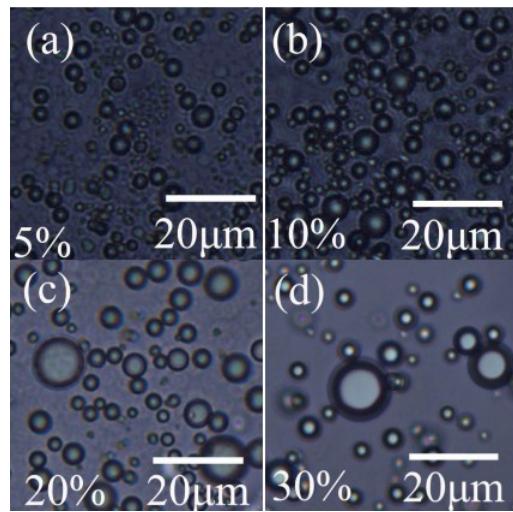


Fig. S5 The microscopic images of toluene-in-water emulsions.

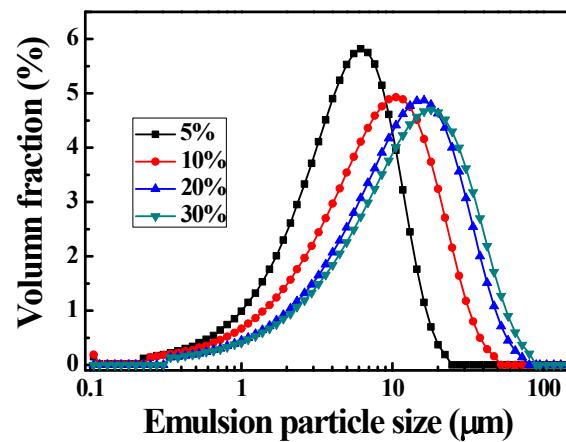


Fig. S6 The size distribution of toluene/water emulsion particles at different toluene volume fractions.

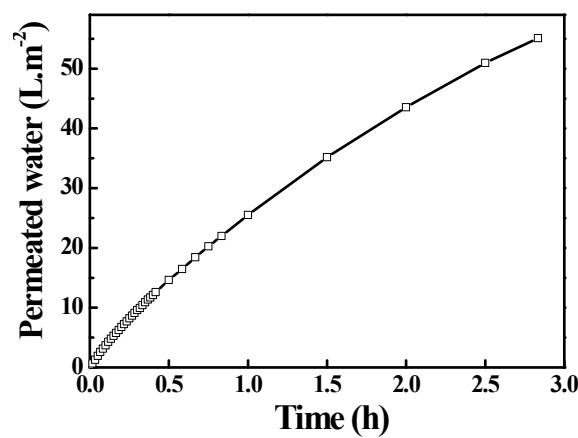


Fig. S7 The permeated water per unit area of 100 mL toluene-in-water emulsion vs. time.

Table S1 The thickness of filter papers after glucose treatment.

glucose concentration/wt%	Thickness of filter paper/mm (pore size 2.5 μm)	Thickness of filter paper/mm (pore size 11 μm)	Thickness of filter paper/mm (pore size 25 μm)
Uncoated	0.200 \pm 0.003	0.179 \pm 0.004	0.201 \pm 0.004
2%	0.204 \pm 0.003	0.185 \pm 0.005	0.205 \pm 0.005
4%	0.208 \pm 0.005	0.188 \pm 0.006	0.207 \pm 0.005
10%	0.214 \pm 0.006	0.196 \pm 0.005	0.213 \pm 0.007
Saturated	0.220 \pm 0.005	0.201 \pm 0.005	0.219 \pm 0.002

Table S2 The residual oil contents after toluene/water mixture (30:70 v/v) separation by the filter papers modified (pore size 25 μm) with different glucose solutions.

glucose concentration/wt%	Toluene content mg/L
Only GA	5.76 \pm 2.16
2% GLC	4.56 \pm 0.96
4% GLC	4.32 \pm 0.72
10% GLC	6.96 \pm 0.48
Saturated GLC	8.16 \pm 1.07

Table S3 The residual oil contents of toluene/water mixtures (30:70 v/v) in acidic, alkaline and saturated NaCl solutions.

Oil/Water mixtures	Toluene content mg/L
H_2O	8.16 \pm 1.07
2M H_2SO_4	21.83 \pm 12.68
2M NaOH	28.78 \pm 15.11
Saturated NaCl	19.19 \pm 3.12

Table S4 The oil contents after toluene/water mixture (30:70 v/v) separations at different temperatures.

Temperatures	Toluene content mg/L
2 °C	4.32 \pm 0.88
30 °C	8.16 \pm 1.07
65 °C	7.92 \pm 3.31

Table S5 The average sizes of toluene/water emulsion droplets at different toluene volume fractions.

Toluene volume fraction (v%)	Volume-average Emulsion particle size (μm)	Area-average Emulsion particle size (μm)
5	5.69	2.79
10	10.05	3.94
20	15.66	6.09
30	16.84	5.94