Supplementary Information

Morpho-Butterfly Inspired Optical Diffraction, Diffusion, and Bio-Chemicals Sensing

Rajib Ahmed,^{1,2*}Xiaochao Ji,³ Raghied M. H. Atta,⁴ Ahmmed A. Rifat,⁵ and Haider Butt ^{1,*}

¹Nanotechnology Laboratory, School of Engineering, University of Birmingham,

Birmingham B15 2TT, United Kingdom

² Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, School of Medicine, Stanford University, Palo Alto, CA 94304, USA

³ School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom

⁴ Electrical Engineering Department, Engineering College, Taibah University, Madinah, Saudi Arabia

⁵ Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Acton, ACT-2601, Australia

*Correspondence: a.rajib@osamember.org , h.butt@bham.ac.uk

Figure S1: Magnified microscopic image of *Morpho*-butterfly wing scale. (a) Top-side green, (b,c) Bottom-side brown and black regions.

Figure S2: (a) Computational block diagram of normal reflection from ridge lamella structure. (b-d) Electric field's intensity distribution with violet, green, and red light normal illumination.

Figure S3: SEM image of *Morpho*-butterfly wing scale. (a) Layered structure, (b-d) Top-side green, (b,c) bottom-side brown and black regions.

Figure S4: (a-d) Top and bottom side-view SEM image of *Morpho*-butterfly wing scale.