Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

1	Supplementary Material					
2	One-pot Synthesis of Highly Active Ni/Fe Nano-bimetal by					
3	Simultaneous Ball Milling and In-situ Chemical Deposition					
4						
5	• Shuo-Shuo Zhang ^{a, †} , Ning Yang ^{a, †} , Shou-Qing Ni ^{a, *} , Vinothkumar Natarajan ^b ,					
6	Hafiz Adeel Ahmad ^a , Shiping Xu ^a , Xu Fang ^c , Jinhua Zhan ^{b, *}					
7	• <i>a Shandong Provincial Key Laboratory of Water Pollution Control and Resource</i>					
8	Reuse, School of Environmental Science and Engineering, Shandong University,					
9	No. 27 Shanda South Road, Jinan 250100 Shandong, PR China					
10	• <i>b Key Laboratory for Colloid & Interface Chemistry of Education Ministry,</i>					
11	Department of Chemistry, Shandong University, Jinan 250100, PR China					
12	• ^c State Key Laboratory of Microbial Technology, Shandong University, Jinan					
13	250100, PR China					
14	 [†] Shuo-Shuo Zhang and Ning Yang contributed equally to this work and share the 					
15	first authorship.					
16	*Corresponding author : Shou-Qing Ni, E-mail: sqni@sdu.edu.cn. Phone and					
17	Fax numbers: + 86-531-88365660. Jinua Zhan, E-mail: jhzhan@sdu.edu.cn.					
18	Phone and Fax number: + 86-531-88365017.					

20	Summary					
21						
22	Text S1. Materials					
23	Text S2. Preparation of iron sponge and Ni/Fe bimetal prepared by chemical					
24	solution deposition (CSD) and ball milling (BM).					
25	Text S3. Characterization of Ni/Fe bimetal					
26	Fig. S1. Relationship between $ln(C/C_0)$ and time as a function of milling time (Ni					
27	content = 25 wt %) on the dechlorination of 4-CP.					
28	Fig. S2. Effect of milling time on the X-ray diffraction peaks of the Ni/Fe materials.					
29	Fig. S3. TEM image of Ni/Fe-B&C.					
30	Fig. S4. EDS analysis of the Ni/Fe-B&C.					
31	Fig. S5. Effect of Ni/Fe dosage on the k_{obs} and k_m in the dechlorination kinetics.					
32	Fig. S6. Effect of 4-CP concentration on the k_{obs} and k_c in the dechlorination kinetics.					
33	Fig.S7. (a) Concentration of dissolved Fe and Ni ion in solution and (b) the total					
34	loss and respective loss rate of Fe, Ni after 10-cycle dechlorination reaction at					
35	different initial pH. (Reaction condition: Ni/Fe dose = 1 g/10mL, 4-CP concentration					
36	= 20 mg/L, Ni content = 20 wt%, each reaction time = 30 min)					
37						

39 Text S1. Materials

40	Iron sponge (>98%) was obtained from Hanbang water purification material
41	factory (Gongyi, Henan, China). Nickel (>99%) powder was obtained from Aladdin
42	Reagent Co., Ltd. (Shanghai). Ethanol and HPLC grade methanol was purchased from
43	Fu Yu Fine Chemical Co., Ltd. (Tianjin, China). 4-CP (>99%) was procured from
44	Lark Technology Co., Ltd. (Beijing, China). All the other reagents used in the
45	experiments were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
46	China). Methanol was GR grade while other chemicals used were AR grade.
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	

57 Text S2. Preparation of iron sponge and Ni/Fe bimetal prepared by chemical

58 solution deposition (CSD) and ball milling (BM).

59 Pretreatment of iron sponge

3.0 g iron sponge briquette was charged into stainless steel (SS) milling pot (100
mL) with several steel balls (90g, 6 mm size). Ball milling process was performed in a
planetary ball mill (QM-3SP2, Nanjing University Instrument, China) consisting of
four grinding jars at a rotation speed of 270 rpm and duration of 2 h with ambient air.
The obtained black powder was stored in centrifugal tubes with N₂ for future use.

65 Ni/Fe bimetal prepared by CSD

5g iron sponge powder prepared before was added into 50 mL of H₂SO₄ solution at pH 1.0 in a 100-mL flask and put it on a shaker at 220 rpm for 15 min. After this, the powder was washed with DI water (50 mL, pre-aerated by N₂ for 15 min) for three times. Finally, the powder treated by acid was mixed with 50 mL NiCl₂ ethanol solution (10 g Ni/L) and constantly shaken in a rotary shaker (220 rpm) at 25°C for 4 h. Then, the obtained powder was separated and washed three times with deoxygenated DI water. The reaction occurs as follows;

73
$$Fe^{0}(s) + Ni^{2+}(aq) \rightarrow Fe^{2+}(aq) + Ni^{0}(s)$$
 (1)

74 Ni/Fe bimetal prepared by BM

Different proportions of nickel powder and iron sponge powder have been poured into grinding jars with 30 g steel balls per 1 g mixture. By a planetary ball mill, mixed powders were milled at a rotation speed of 270 rpm without inert gas

79			
80			
81			
82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			

78 protection for 2 h. The prepared powders were deposited in a centrifugal tube with N_2 .

94 Text S3. Characterization of Ni/Fe bimetal

95	The scanning electron microscopy (SEM, JSM-6700F, JEOL, Japan) and energy
96	dispersive X-ray spectroscopy (EDS, INCA X- Sight, Oxford Instruments, UK) was
97	used to characterize the morphology and surface elemental composition of the Ni/Fe
98	bimetallic particles prepared by BM and B&C. X-ray diffraction (XRD) analysis was
99	performed to examine the changes of crystal before and after B&C. The Ni/Fe bimetal
100	particles were supported on a carbon-coated Cu-grid to carry out morphological
101	studies using a transmission electron microscopy (TEM, JEM-1011, JEOL, Japan).
102	The electrochemical measurement (cyclic voltammetry) was carried out in a
103	conventional three-electrode cell using a CHI 660D electrochemical work station at
104	room temperature.
105	
106	
107	
108	
109	
110	
111	

114	Fig S	1 TEV	limaga	of Ni/Fo	$\mathbf{R} \mathbf{R} \mathbf{C}$
114	rig. 5	I. I EIV	i image	OI INI/FE	-Dau.

Fig. S2. EDS analysis of the Ni/Fe-B&C.

Fig. S3. Effect of milling time on the X-ray diffraction peaks of the Ni/Fe materials.

Fig. S4. Relationship between $ln(C/C_0)$ and time as a function of milling time (Ni

136 content = 25 wt %) on the dechlorination of 4-CP.

Fig. S5. Effect of Ni/Fe dosage on the k_{obs} and k_m in the dechlorination kinetics.

Fig. S6. Effect of 4-CP concentration on the k_{obs} and k_c in the dechlorination kinetics.

Fig. S7. (a) Concentration of dissolved Fe and Ni ion in solution and (b) the total loss and respective loss rate of Fe, Ni after 10-cycle dechlorination reaction at different initial pH. (Reaction condition: Ni/Fe dose = 1 g/10mL, 4-CP concentration = 20 mg/L, Ni content = 20 wt%, each reaction time = 30 min)