Supplementary Information

Carboxymethylcellulose ammonium-derived nitrogen-doped

carbon fibers/molybdenum disulfide hybrids for high-

performance supercapacitor electrodes

Yanyan Lv,^a Yi Zhou,^a Ziqiang Shao^{*a}, Jie Wei,^a Lei Li,^a Yiping Wang^b

^a Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

^b Nantong Tailida Chemical Co., Ltd, Jiangsu, 226000, P. R. China.

* Email: <u>shaoziqiang@263.net</u>

Keywords: Carboxymethylcellulose ammonium, Nitrogen-doped carbon fibers, Molybdenum disulfide, Supercapacitors

The SEM images of CMC-NH₄ and CMC-NH₄/MoS₂ (Which is shown in next page)

Fig. S1 SEM images of CMC-NH₄ after solvothermal treatment with ethanol solution concentrations of (a) 0%, (c) 25%, (e) 50%, (g) 75%, (i) 100%; and CMC-NH₄/MoS₂ prepared by solvothermal reaction at ethanol solution concentrations of (b) 0%, (d) 25%, (f) 50%, (h) 75%, (j) 100%.

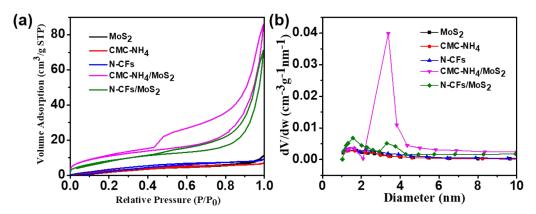
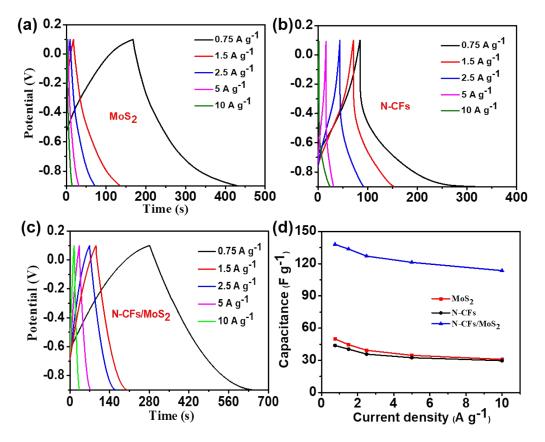



Fig. S2 N₂ adsorption/desorption isotherms and BJH pore size distribution curves of samples.

Fig. S3 Typical GCD curves of the (a) pure MoS_2 , (b) N-CFs, and (c) N-CFs/MoS₂ hybrids based symmetric supercapacitors at different current densities. (d) The specific capacitance of the symmetric supercapacitors at different current densities.