Engineering Docetaxel Loaded Micelles for Non-Small Cell

Lung Cancer: A Comparative Study of Microfluidic and Bulk

Nanoparticle Preparation

Yuchen Bao¹, Qinfang Deng¹, Yongyong Li^{2*}, Songwen Zhou^{1*} ¹Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of medicine, Shanghai, 200433, China; ²The Institute for Biomedical Engineering & Nanoscience of Tongji University, Shanghai 200092, China. Correspondence: Yongyong Li Institute for Biomedical Engineering &Nanoscience, Tongji University School of medicine, Shanghai, 200092, China Email yongyong_li@tongji.edu.cn Telephone: +86-021-65988029 Songwen Zhou Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of medicine, Shanghai, 200433, China Email Zhou_songwen2092@126.com Telephone: +86-021-65115006

Weight ratio	Drug loading(%)	Drug Encapsulation(%)
20:4	precipitation	/
(polymer / docetaxel)		
20:2	precipitation	/
(polymer / docetaxel)		
10:4	13.6%	36%
(polymer / docetaxel)		
10:2	11.7%	67%
(polymer / docetaxel)		
10:1	5.2%	45%
(polymer / docetaxel)		

Supplementary table.1 The mass ratio of the polymer to docetaxel, and the respective drug loading rate

Organic phase	Secondary water phase	Flow ratio	Average particle size (nm)
50 µL/min	400 µL/min	1:8	100~102 nm
40 µL/min	400 µL/min	1:10	100~102 nm
50 µL/min	380 µL/min	1: 7.6	95~100 nm
40 µL/min	380 µL/min	1: 9.5	95~100nm

50µL/min	360µL/min	1:7.2	85~90 nm
40µL/min	360µL/min	1:9	74~79 nm
30µL/min	360µL/min	1:12	80~90nm
40µL/min	340 µL/min	1:8.5	90~95 nm
30µL/min	340 µL/min	1: 11.3	89~95 nm

Supplementary table.2 The flow rate of the organic phase and the aqueous phase in microfluidic technology.

Supplementary figure 1 ¹H NMR spectrum

Notes: (A) ¹H NMR spectra of Mal-PEG-PLGA in CDCl₃. (B)¹H NMR spectra of fKRGD in CDCl₃. (C) ¹H NMR spectra of fKRGD-labelled Mal-PEG-PLGA in CDCl₃.

Abbreviations: Nuclear Magnetic Resonance, NMR

Supplementary figure 2 Calculation formula of docetaxel loading rate and encapsulation rate.

Supplementary figure 3 The chemistry of the FITC-PLGA-PEG-Mal preparation and the UV spectra of FMD, FMM, FTMM.

Notes: (A) Chemistry preparation of the FITC-PLGA-PEG-Mal. (B) The UV spectra of FMD, FMM, FTMM.

Abbreviations: FITC, fluorescein isothiocyanate; FMD, FITC-labeled micelles by dialysis; FMM, FITC-labeled micelles by microfluidics; FTMM, FITC-labeled targeting micelles by microfluidics.

Supplementary figure 4 The phagocytic rate of different FITC-labeled micelles examined at 2, 4, 6 h in A549 and 3LL. (A) A549 cell. (B) 3LL cell. Each data point represents the mean \pm SD of three tests.

Abbreviations: FITC, fluorescein isothiocyanate; SD, standard deviation.