Supporting Information

Detection of SO₂ derivatives using a new chalco-coumarin derivative in a cationic micellar media. Application to real samples.

Marisol Gómez,^{a,b*} Margarita E. Aliaga,^a Verónica Arancibia,^a Alexis Moya,^a Camilo Segura,^c Marco T. Nuñez^d, Pabla Aguirre,^d Edgar Nagles^e and Olimpo García-Beltrán.^{e,*}

^{a.} Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, 7820436, Chile. ^{b.} Escuela de Obstetricia y Puericultura and Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, General Gana 1702, Santiago, 8370993, Chile.

^{c.} Department of Chemistry, Faculty of Sciences, Universidad de Chile, Santiago 7800024, Chile.
^{d.} Biology Department, Faculty of Sciences, Universidad de Chile, Santiago 7800024, Chile
^{e.} Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia.

Table of contents

Contents	Page
Figure S1. ¹ H NMR (DMSO- d_6) spectrum of ChC16.	\$3
Figure S2. ¹³ C NMR (DMSO- d_6) spectrum of ChC16.	S4
Figure S3. HRMS (ESI) of ChC16.	S4
Figure S4. (A) UV-Vis spectrum of ChC16 (B) UV-Vis spectrum of ChC16 in presence of CPB.	S5
Figure S5. (A) UV-Vis spectra of ChC16 at different concentration; (B) Plot of absorbance of probe ChC16 against its concentration from 1 to 4.5 μ M.	S5
Figure S6. HRMS (ESI) of ChC16-SO ₃ H	S6
Table S1. Comparative summary of different probes reported by SO2-derivatives.	S7
References	S8

Figure S1. ¹H NMR (DMSO-*d*₆) spectrum of **ChC16**

Figure S2. ¹³C NMR (DMSO- d_6) spectrum of **ChC16**.

Figure S3. HRMS (ESI) of ChC16 (Positive mode [M+1]=354.1148 at 140000 resolution).

Figure S4. (A) UV-vis spectrum of ChC16 and (B) UV-vis spectrum of ChC16 in presence of CPB (1.5 mM).

Figure S5. (A) UV-Vis spectra of ChC16 at different concentration; (B) Plot of absorbance of probe ChC16 against its concentration from 1 to 4.5 μ M.

Figure S6. HRMS (ESI) of ChC16-SO₃H (Positive mode [M+1]=435.1597 at 140000 resolution).

Prob e	Molecule	Detectio n Limit	Respons e Time	Applications	Reference s
1	C C C C C C C C C C C C C C C C C C C	1.39 nM	30 min	Living cell Bioimaging	1
2		28 nM	140 s	Living cell and environment	2
3		10.6 nM	10 s	Dry white wine	3
4	N CCC P N N CCCC	12.85 nM	180 s	Living cell imaging	4
5	CARA CON-	25 nM	60 s	Living cell imaging	5
6	CAN-CIN-	58.6 nM	90 s	Living cell imaging	6
7	Jo Lo Lo Lo	85 nM	30 s	Living cell imaging	7
8		390 nM	<5 s	Living cell imagining, Brain Tissues and Zebrafishes	8
9		1730 nM	4 min	Cancer cell	9
10		2340 nM	4 min	Cancer cell	9
11		3.5 nM	30 min	Cell and in vivo	10

Table S1. Comparative summary of different probes reported by SO_2 -derivatives.

12		8.8 nM	4 min	Bioimaging	11
13		7.4 nM	15 s	Food Sample and Living systems	12
14	-N CTOTO -N-	87 nM	30s	Food and living cell	13
15	N-0 NO2 OMe	28.2 μM	30 min/30 min	Wine/Bioimagin g	14
16	S Br	0.77 μM	2 min	Living cell imaging	15
17		1.9 nM	5 min	Living cell imaging	16
18		6.3 µM	30 min	Sugar	17
19		1.76 μM	2 min	Sugar	18
20	El ₂ N CHO	0.187 μM	2 min	Water Sugar	19
16	- Colores	240 nM	15 min	Wine/ Bioimaging	This work

References

- 1 T. Yu, G. Yin, T. Niu, P. Yin, H. Li, Y. Zhang, H. Chen, Y. Zeng and S. Yao, *Talanta*, 2018, **176**, 1–7.
- 2 Z. Ye, C. Duan, R. Sheng, J. Xu, H. Wang and L. Zeng, *Talanta*, 2018, **176**, 389–396.
- 3 A. Liu, R. Ji, S. Shen, X. Cao and Y. Ge, *New J. Chem.*, 2017, **41**, 10096–10100.
- 4 L. Zhang, Z. Wang, J. Liu, J. Miao and B. Zhao, *Sensors Actuators B. Chem.*, 2017, **253**, 19–26.

- 5 W. Xu, P. Ma, Q. Diao, L. Xu, X. Liu, Y. Sun, X. Wang and D. Song, *Sensors Actuators B Chem.*, 2017, **252**, 86–94.
- 6 Y. Wang, Q. Meng, R. Zhang, H. Jia, C. Wang and Z. Zhang, *J. Lumin.*, 2017, **192**, 297–302.
- 7 L. Wang, W. Li, W. Zhi, D. Ye, Y. Wang, L. Ni and X. Bao, *Dye. Pigment.*, 2017, **147**, 357–363.
- 8 Y. Ma, Y. Tang, Y. Zhao, S. Gao and W. Lin, *Anal. Chem.*, 2017, **89**, 9388–9393.
- J. Wang, Y. Hang, H. Tan, T. Jiang, X. Qu and J. Hua, J. Photochem. Photobiol. A Chem., 2017, 346, 265–272.
- 10 K. Dou, Q. Fu, G. Chen, F. Yu, Y. Liu, Z. Cao, G. Li, X. Zhao, L. Xia, L. Chen, H. Wang and J. You, *Biomaterials*, 2017, **133**, 82–93.
- 11 C. Yin, X. Li, Y. Yue, J. Chao, Y. Zhang and F. Huo, *Sensors Actuators B Chem.*, 2017, **246**, 615–622.
- 12 T. Gao, X. Cao, P. Ge, J. Dong, S. Yang, H. Xu, Y. Wu, F. Gao and W. Zeng, *Org. Biomol. Chem.*, 2017, **15**, 4375–4382.
- 13 M. Li, W. Feng, H. Zhang and G. Feng, *Sensors Actuators B Chem.*, 2017, 243, 51–58.
- 14 M. Gómez, E. G. Perez, V. Arancibia, C. Iribarren, C. Bravo-Díaz, O. García-Beltrán and M. E. Aliaga, *Sensors Actuators B Chem.*, 2017, **238**, 578–587.
- 15 J. Chao, X. Wang, Y. Liu, Y. Zhang, F. Huo, C. Yin, M. Zhao, J. Sun and M. Xu, *Sensors Actuators B Chem.*, 2018, **272**, 195–202.
- 16 J. Chao, H. Wang, Y. Zhang, C. Yin, F. Huo, J. Sun and M. Zhao, *New J. Chem.*, 2018, **42**, 3322–3333.
- 17 J. Chao, Y. Liu, Y. Zhang, Y. Zhang, F. Huo, C. Yin, Y. Wang and L. Qin, *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, 2015, **146**, 33–37.
- 18 J. Chao, Y. Zhang, H. Wang, Y. Zhang, F. Huo, C. Yin, L. Qin and Y. Wang, Sensors Actuators B Chem., 2013, **188**, 200–206.
- 19 Y. Yang, F. Huo, J. Zhang, Z. Xie, J. Chao, C. Yin, H. Tong, D. Liu, S. Jin, F. Cheng and X. Yan, Sensors Actuators B Chem., 2012, **166–167**, 665–670.