Reaction of FcC≡CC(O)R (Fc=ferrocenyl) with Ru₃(CO)₁₂ leading to unexpected nitro-group reduced ruthenoles and 1,2-CO-inserted triruthenium clusters

Lei Xu, Liping Jiang, Shasha Li, Guofang Zhang, Weiqiang Zhang and Ziwei Gao

Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and

Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China

Table S1.Crystal and refinement data of 1b, 1d, 2a, 2b, 2c, 2d, 4a, 4d and 5dS1
Table S2.The geometries parameter of 2c
Table S3.The geometries parameter of 5c
Fig. S1.The crystal structure of compound 1d
Fig. S2.The crystal structure of compound 2a
Fig. S3. The crystal structure of compound $2b \cdot 1/2C_6H_{14}$
Fig. S4. The crystal structure of compound 2c
Fig. S5.The crystal structure of compound 4d
Fig. S6.The DFT-optimized structure of compound 5c
¹ H NMR spectra of all new compounds
¹³ C{1H} NMR spectra of all new compounds
FT-IR spectra of all new compounds

Compounds	1b	1d	2a
formula	$C_{44}H_{28}Fe_2O_8Ru_2$	$C_{44}H_{28}Fe_2O_8Ru_2$	$C_{27}H_{12}FeO_{11}Ru_3S$
Fw(g mol ⁻¹)	998.50	998.50	903.49
Wavelength(Å)	0.71073	0.71073	0.71073
T (K)	296(2)	296(2)	153(2)
crystal system	Triclinic	Monoclinic	Monoclinic
space group	P-1	P2(1)/c	P2(1)/c
a (Å)	12.420(2)	9.8872(5)	17.659(3)
b (Å)	12.656(2)	24.2002(12)	10.0342(19)
c (Å)	14.050(2)	15.6004(8)	33.191(7)
α(°)	94.236(5)	90.00	90.00
β(°)	106.349(5)	96.503(2)	101.971(5)
γ (°)	107.077(5)	90.00	90.00
V (Å3)	1996.0(5)	3708.7(3)	5753.4(19)
Ζ	2	4	8
$Dc (Mg m^{-3})$	1.661	1.788	2.086
Absorption coefficient (mm ⁻¹)	1.507	1.622	2.172
F(000)	992	1984	3488
Crystal sizes (mm)	0.17×0.13×0.11	0.13×0.12×0.10	0.14×0.13×0.10
collected/unique	69759/7831	89603/7292	76940/5660
R _{int}	0.0396	0.0530	0.0376
Data/restraints/parameters	7831/0/ 505	7292/0/505	5660/0/388
GOF on F2	1.108	1.074	1.193
R1, wR2 $[I \ge 2\sigma(I)]$	0.0294, 0.0695	0.0245, 0.0501	0.0255, 0.0497
R1, wR2 (all data)	0.0323, 0.0695	0.0315, 0.0529	0.0301, 0.0511
largestdiff. Peak/hole (e. Å ⁻³)	0.412, -0.599	0.383,-0.501	0.504,-0.503

Table S1. Crystal and refinement data of 1b, 1d, 2a, 2b, 2c, 2d, 4a, 4d and 5d.

Complex	2b	2c	2d
formula	$C_{43}H_{31}Fe_2O_8Ru_2S_2$	$C_{5.03}H_{2.74}Fe_{0.23}O_{1.37}$	$C_{40}H_{24}Fe_2O_8Ru_2S_2$
		$Ru_{0.34}S_{0.23}$	
Fw(g mol ⁻¹)	1053.64	139.85	1010.55
Wavelength(Å)	0.71073	0.71073	0.71073
T (K)	296(2)	153(2)	154(2)
crystal system	Triclinic	Monoclinic	Monoclinic
space group	P-1	P2(1)/c	P2(1)/c
a (Å)	11.9891(10)	14.508(4)	12.0452(5)
b (Å)	12.0802(10)	8.676(3)	18.9355(8)
c (Å)	15.8425(14)	34.637(10)	16.7320(8)
α(°)	92.359(3)	90.00	90.00
β(°)	109.803(2)	99.749(10)	107.767(2)
γ (°)	108.441(3)	90.00	90.00
V(Å3)	2019.5(3)	4297(2)	3634.2(3)
Ζ	2	35	4
$Dc (Mg m^{-3})$	1.733	1.892	1.847
Absorption coefficient (mm ⁻¹)	1.594	1.850	1.768
F(000)	1050	2400	2000
Crystal sizes (mm)	0.15×0.13×0.10	0.15×0.14×0.12	0.17×0.13×0.11
collected/unique	56992/7909	67291/7879	120716/7138
R _{int}	0.0555	0.0551	0.0497
Data/restraints/parameters	7909/7/515	7879/172/552	7138/24/487
GOF on F2	1.097	1.094	1.097
R1, wR2 $[I \ge 2\sigma(I)]$	0.0435, 0.0911	0.1088, 0.2718	0.0259, 0.0614
R1, wR2 (all data)	0.0601, 0.1041	0.1147, 0.2750	0.0298, 0.0632
largestdiff. Peak/hole(e. Å ⁻³)	1.148, -0.839	6.411,-3.011	1.390,-0.816

Table S1. Crystal and refinement data of 1b, 1d, 2a, 2b, 2c, 2d, 4a, 4d and 5d.

Complex	4a	4d	5d
formula	$C_{29}H_{15}FeNO_{11}Ru_3$	$C_{44}H_{30}Fe_2N_2O_8Ru_2$	$C_{45}H_{30}Cl_2Fe_2N_2O_{10}Ru_2$
Fw(g mol ⁻¹)	912.48	1028.54	1143.45
Wavelength(Å)	0.71073	0.71073	0.71073
T (K)	153(2)	153(2)	153(2)
crystal system	Orthorhombic	Monoclinic	Orthorhombic
space group	Pbca	C2/c	Pbca
a (Å)	13.995(4)	29.747(9)	22.8840(19)
b (Å)	11.729(4)	19.893(6)	15.4397(13)
c (Å)	34.893(12)	15.727(6)	23.772(2)
α(°)	90.00	90.00	90.00
β(°)	90.00	114.924(12)	90.00
γ (°)	90.00	90.00	90.00
V (Å3)	5727(3)	8440(5)	8399.2(12)
Ζ	8	8	8
$Dc (Mg m^{-3})$	2.116	1.619	1.808
Absorption coefficient (mm ⁻¹)	2.113	1.430	1.573
F(000)	3536	4096	4544
Crystal sizes (mm)	0.18×0.13×0.10	0.15×0.13×0.10	0.15×0.13×0.09
collected/unique	63513/5636	48133/8281	256536/8244
R _{int}	0.0390	0.0677	0.1323
Data/restraints/parameters	5636/ 0/406	8281/44/523	8244/0/568
GOF on F2	0.888	1.072	1.064
R1, wR2 [$I \ge 2\sigma(I)$]	0.0270, 0.0592	0.0533, 0.1256	0.0248, 0.0553
R1, wR2 (all data)	0.0390, 0.0651	0.0720, 0.1396	0.0319, 0.0594
largestdiff. Peak/hole (e. $Å^{-3}$)	0.798, -0.515	1.489,-1.500	0.548,-0.761

Table S1. Crystal and refinement data of 1b, 1d, 2a, 2b, 2c, 2d, 4a, 4d and 5d.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	44	0	-0.599579	-1.549890	1.534200
2	44	0	-2.150053	-2.399389	-0.658424
3	44	0	0.624377	-1.589450	-1.141122
4	26	0	-2.062340	3.786692	0.571448
5	26	0	3.977356	3.102761	-0.362217
6	16	0	-6.315861	0.620176	0.481913
7	6	0	-1.340872	1.842445	1.163336
8	6	0	-2.454871	2.259533	2.007111
9	1	0	-3.384602	1.739734	2.163828
10	6	0	-2.100482	3.476730	2.670776
11	1	0	-2.731920	4.022571	3.358680
12	6	0	-0.780906	3.854091	2.244522
13	1	0	-0.239169	4.741070	2.550040
14	6	0	-0.316006	2.870086	1.313396
15	1	0	0.635264	2.887317	0.813058
16	6	0	-2.580111	3.919097	-1.484371
17	1	0	-2.481602	3.116809	-2.201830
18	6	0	-3.737157	4.195794	-0.670536
19	1	0	-4.660868	3.639074	-0.665777
20	6	0	-3.438240	5.343949	0.144127
21	1	0	-4.094613	5.788604	0.880730
22	6	0	-2.098197	5.774064	-0.164310
23	1	0	-1.573487	0.301766	6.602532
24	6	0	-1.568397	4.886497	-1.166158
25	1	0	-0.579334	4.945541	-1.614189

Table S2. The geometries parameter of **2c**.

B3LYP/LanL2DZ/6-31G

26 6 0 -1.197607 0.535742 0.441854 27 6 0 -2.240329 -0.452363 0.336826 28 6 0 -3.638186 -0.231617 0.822325 29 6 0 -4.597827 0.401835 -0.091429 30 6 0 -4.597827 0.401835 -0.091429 30 6 0 -4.597827 0.401835 -0.91429 31 1 0 -3.508490 0.794216 -1.927370 32 6 0 -5.653125 1.373560 -1.968174 33 1 0 -5.713110 1.757910 -2.980071 34 6 0 -6.729374 1.331802 -1.113285 35 1 0 -7.746777 1.657453 -1.295633 36 6 0 3.576021 1.190503 0.469825 37 6 0 3.541313 2.202172 1.508237 38 1 0 2.687801 2.434245 2.130790 39 6 0 4.833346 2.823185 1.565498 40 1 0 5.121017 3.64810 2.231688 41 6 0 2.442075 3.669514 -1.713807 43 6 0 2.442075 3.669514 -1.713807 44 1 0 5.27291 -0.032612 44 1 0 1.592348 3.107608 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 26	6	0	-1.197607	0.535742	0.441854
2860 -3.638186 -0.231617 0.822325 29 60 -4.597827 0.401835 -0.091425 30 60 -4.450835 0.851914 -1.390321 31 10 -3.508490 0.794216 -1.927370 32 60 -5.653125 1.373560 -1.968174 33 10 -5.713110 1.757910 -2.980071 34 60 -6.729374 1.331802 -1.113285 35 10 -7.746777 1.657453 -1.295633 36 60 3.576021 1.190503 0.469825 37 60 3.576021 1.190503 0.469825 37 60 3.576021 1.190503 0.469825 38 10 2.687801 2.434245 2.130790 39 60 4.833346 2.823185 1.565498 40 10 5.121017 3.624810 2.231688 41 60 5.670513 2.211552 0.564124 42 10 6.695914 2.481513 0.343537 43 60 4.899351 1.217892 -0.117436 44 10 5.240355 0.601247 -0.943084 45 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60	27	б	0	-2.240329	-0.452363	0.336826
2960 -4.597827 0.401835 -0.091425 30 60 -4.450835 0.851914 -1.390321 31 10 -3.508490 0.794216 -1.927370 32 60 -5.653125 1.373560 -1.968174 33 10 -5.713110 1.757910 -2.980071 34 60 -6.729374 1.331802 -1.113285 35 10 -7.746777 1.657453 -1.295633 36 60 3.576021 1.190503 0.469825 37 60 3.541313 2.202172 1.508237 38 10 2.687801 2.434245 2.130790 39 60 4.833346 2.823185 1.565498 40 10 5.121017 3.624810 2.231688 41 60 5.670513 2.211552 0.564124 42 10 6.695914 2.481513 0.343537 43 60 2.442075 3.669514 -1.713807 44 10 5.240355 0.601247 -0.943084 45 60 2.442075 3.669514 -1.713807 48 10 1.902980 5.072291 -0.032612 49 60 4.646303 4.409775 -1.889105 52 10 5.677801 4.504446 -2.200412 53 60	28	б	0	-3.638186	-0.231617	0.822325
30 6 0 -4.450835 0.851914 -1.390321 31 1 0 -3.508490 0.794216 -1.927370 32 6 0 -5.653125 1.373560 -1.968174 33 1 0 -5.713110 1.757910 -2.980071 34 6 0 -6.729374 1.331802 -1.113285 35 1 0 -7.746777 1.657453 -1.295633 36 6 0 3.576021 1.190503 0.469825 37 6 0 3.576021 1.190503 0.469825 37 6 0 3.576021 1.190503 0.469825 38 1 0 2.687801 2.434245 2.130790 39 6 0 4.833346 2.823185 1.565498 40 1 0 5.121017 3.624810 2.231688 41 6 0 5.670513 2.211552 0.564124 42 1 0 5.670513 2.211552 0.564124 42 1 0 5.240355 0.601247 -0.943084 45 6 0 2.442075 3.669514 -1.713807 46 1 0 1.532348 3.107608 -1.864097 47 6 0 2.64087 4.709377 -0.734294 48 1 0 1.902980 5.072291 -0.032612 49 6 0 4.646303	29	6	0	-4.597827	0.401835	-0.091429
3110 -3.508490 0.794216 -1.927370 32 60 -5.653125 1.373560 -1.968174 33 10 -5.713110 1.757910 -2.980071 34 60 -6.729374 1.331802 -1.113285 35 10 -7.746777 1.657453 -1.295633 36 60 3.576021 1.190503 0.469825 37 60 3.541313 2.202172 1.508237 38 10 2.687801 2.434245 2.130790 39 60 4.833346 2.823185 1.565498 40 10 5.121017 3.624810 2.231688 41 60 5.670513 2.211552 0.564124 42 10 6.695914 2.481513 0.343537 43 60 4.899351 1.217892 -0.117436 44 10 5.240355 0.601247 -0.943084 45 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60 4.005645 5.166574 -0.843730 50 10 4.472019 5.931524 -0.234710 51 60 3.681880 3.484714 -2.426028 54 10 3.857351 2.766471 -3.217092	30	6	0	-4.450835	0.851914	-1.390321
3260 -5.653125 1.373560 -1.968174 33 10 -5.713110 1.757910 -2.980071 34 60 -6.729374 1.331802 -1.113283 35 10 -7.746777 1.657453 -1.295633 36 60 3.576021 1.190503 0.469825 37 60 3.541313 2.202172 1.508237 38 10 2.687801 2.434245 2.130790 39 60 4.833346 2.823185 1.565498 40 10 5.121017 3.624810 2.231688 41 60 5.670513 2.211552 0.564124 42 10 6.695914 2.481513 0.343537 43 60 4.899351 1.217892 -0.117436 44 10 5.240355 0.601247 -0.943084 45 60 2.442075 3.669514 -1.713807 46 10 1.532348 3.107608 -1.864097 47 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60 4.005645 5.166574 -0.843730 50 10 4.646303 4.409775 -1.889109 52 10 5.677801 4.504446 -2.200412 53 60 <td< td=""><td>31</td><td>1</td><td>0</td><td>-3.508490</td><td>0.794216</td><td>-1.927370</td></td<>	31	1	0	-3.508490	0.794216	-1.927370
3310 -5.713110 1.757910 -2.980711 34 60 -6.729374 1.331802 -1.113285 35 10 -7.746777 1.657453 -1.295633 36 60 3.576021 1.190503 0.469825 37 60 3.541313 2.202172 1.508237 38 10 2.687801 2.434245 2.130790 39 60 4.833346 2.823185 1.565498 40 10 5.121017 3.624810 2.231688 41 60 5.670513 2.211552 0.564124 42 10 6.695914 2.481513 0.343537 43 60 2.442075 3.669514 -1.713807 44 10 5.240355 0.601247 -0.943084 45 60 2.442075 3.669514 -1.713807 46 10 1.532348 3.107608 -1.864097 47 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60 4.065645 5.166574 -0.843730 50 10 4.646303 4.409775 -1.889105 51 60 3.681880 3.484714 -2.200412 53 60 3.681880 3.484714 -2.426028 54 10	32	6	0	-5.653125	1.373560	-1.968174
34 6 0 -6.729374 1.331802 -1.113285 35 1 0 -7.746777 1.657453 -1.295633 36 6 0 3.576021 1.190503 0.469825 37 6 0 3.541313 2.202172 1.508237 38 1 0 2.687801 2.434245 2.130790 39 6 0 4.833346 2.823185 1.565498 40 1 0 5.121017 3.624810 2.231688 41 6 0 5.670513 2.211552 0.564124 42 1 0 6.695914 2.481513 0.343537 43 6 0 4.899351 1.217892 -0.117436 44 1 0 5.240355 0.601247 -0.943084 45 6 0 2.442075 3.669514 -1.713807 46 1 0 1.532348 3.107608 -1.864097 47 6 0 2.644087 4.709377 -0.32612 49 6 0 4.005645 5.166574 -0.843730 50 1 0 4.646303 4.409775 -1.889105 51 6 0 3.681880 3.484714 -2.200412 53 6 0 3.681880 3.484714 -2.426028 54 1 0 3.87351 2.766471 -3.217092	33	1	0	-5.713110	1.757910	-2.980071
3510 -7.746777 1.657453 -1.295633 3660 3.576021 1.190503 0.469825 3760 3.541313 2.202172 1.508237 3810 2.687801 2.434245 2.130790 3960 4.833346 2.823185 1.565498 4010 5.121017 3.624810 2.231688 4160 5.670513 2.211552 0.564124 4210 6.695914 2.481513 0.343537 4360 4.899351 1.217892 -0.117436 4410 5.240355 0.601247 -0.943084 4560 2.442075 3.669514 -1.713807 4610 1.532348 3.107608 -1.864097 4760 2.644087 4.709377 -0.734294 4810 1.902980 5.072291 -0.032612 4960 4.005645 5.166574 -0.843730 5010 4.472019 5.931524 -0.234710 5160 4.646303 4.409775 -1.889109 5210 5.677801 4.504446 -2.200412 5360 3.681880 3.484714 -2.426028 5410 3.857351 2.766471 -3.217092	34	6	0	-6.729374	1.331802	-1.113285
36 6 0 3.576021 1.190503 0.469825 37 6 0 3.541313 2.202172 1.508237 38 1 0 2.687801 2.434245 2.130790 39 6 0 4.833346 2.823185 1.565498 40 1 0 5.121017 3.624810 2.231688 41 6 0 5.670513 2.211552 0.564124 42 1 0 6.695914 2.481513 0.343537 43 6 0 4.899351 1.217892 -0.117436 44 1 0 5.240355 0.601247 -0.943084 45 6 0 2.442075 3.669514 -1.713807 46 1 0 1.532348 3.107608 -1.864097 47 6 0 2.644087 4.709377 -0.734294 48 1 0 1.902980 5.072291 -0.032612 49 6 0 4.005645 5.166574 -0.843730 50 1 0 4.472019 5.931524 -0.234710 51 6 0 4.646303 4.409775 -1.889109 52 1 0 5.677801 4.504446 -2.200412 53 6 0 3.681880 3.484714 -2.426028 54 1 0 3.857351 2.766471 -3.217092	35	1	0	-7.746777	1.657453	-1.295633
3760 3.541313 2.202172 1.508237 38 10 2.687801 2.434245 2.130790 39 60 4.833346 2.823185 1.565498 40 10 5.121017 3.624810 2.231688 41 60 5.670513 2.211552 0.564124 42 10 6.695914 2.481513 0.343537 43 60 4.899351 1.217892 -0.117436 44 10 5.240355 0.601247 -0.943084 45 60 2.442075 3.669514 -1.713807 46 10 1.532348 3.107608 -1.864097 47 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60 4.005645 5.166574 -0.843730 50 10 4.472019 5.931524 -0.234710 51 60 4.646303 4.409775 -1.8891095 52 10 5.677801 4.504446 -2.200412 53 60 3.681880 3.484714 -2.426028 54 10 3.857351 2.766471 -3.217092	36	6	0	3.576021	1.190503	0.469825
3810 2.687801 2.434245 2.130790 39 60 4.833346 2.823185 1.565498 40 10 5.121017 3.624810 2.231688 41 60 5.670513 2.211552 0.564124 42 10 6.695914 2.481513 0.343537 43 60 4.899351 1.217892 -0.117436 44 10 5.240355 0.601247 -0.943084 45 60 2.442075 3.669514 -1.713807 46 10 1.532348 3.107608 -1.864097 47 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60 4.646303 4.409775 -1.889109 50 10 4.646303 4.409775 -1.889109 51 60 3.681880 3.484714 -2.420028 53 60 3.681880 3.484714 -2.426028	37	6	0	3.541313	2.202172	1.508237
39 6 0 4.833346 2.823185 1.565498 40 1 0 5.121017 3.624810 2.231688 41 6 0 5.670513 2.211552 0.564124 42 1 0 6.695914 2.481513 0.343537 43 6 0 4.899351 1.217892 -0.117436 44 1 0 5.240355 0.601247 -0.943084 45 6 0 2.442075 3.669514 -1.713807 46 1 0 1.532348 3.107608 -1.864097 47 6 0 2.644087 4.709377 -0.734294 48 1 0 1.902980 5.072291 -0.032612 49 6 0 4.005645 5.166574 -0.843730 50 1 0 4.646303 4.409775 -1.889109 51 6 0 3.681880 3.484714 -2.200412 53 6 0 3.6517801 4.504446 -2.200412 54 1 0 3.857351 2.766471 -3.217092	38	1	0	2.687801	2.434245	2.130790
4010 5.121017 3.624810 2.231688 41 60 5.670513 2.211552 0.564124 42 10 6.695914 2.481513 0.343537 43 60 4.899351 1.217892 -0.117436 44 10 5.240355 0.601247 -0.943084 45 60 2.442075 3.669514 -1.713807 46 10 1.532348 3.107608 -1.864097 47 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60 4.005645 5.166574 -0.843730 50 10 4.472019 5.931524 -0.234710 51 60 3.681880 3.484714 -2.426028 52 10 5.677801 4.504446 -2.200412 53 60 3.681880 3.484714 -2.426028	39	6	0	4.833346	2.823185	1.565498
41 6 0 5.670513 2.211552 0.564124 42 1 0 6.695914 2.481513 0.343537 43 6 0 4.899351 1.217892 -0.117436 44 1 0 5.240355 0.601247 -0.943084 45 6 0 2.442075 3.669514 -1.713807 46 1 0 1.532348 3.107608 -1.864097 47 6 0 2.644087 4.709377 -0.734294 48 1 0 1.902980 5.072291 -0.032612 49 6 0 4.005645 5.166574 -0.843730 50 1 0 4.472019 5.931524 -0.234710 51 6 0 4.646303 4.409775 -1.889109 52 1 0 3.681880 3.484714 -2.426028 54 1 0 3.857351 2.766471 -3.217092	40	1	0	5.121017	3.624810	2.231688
4210 6.695914 2.481513 0.343537 43 60 4.899351 1.217892 -0.117436 44 10 5.240355 0.601247 -0.943084 45 60 2.442075 3.669514 -1.713807 46 10 1.532348 3.107608 -1.864097 47 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60 4.005645 5.166574 -0.843730 50 10 4.472019 5.931524 -0.234710 51 60 3.681880 3.484714 -2.426028 54 10 3.857351 2.766471 -3.217092	41	6	0	5.670513	2.211552	0.564124
43 6 0 4.899351 1.217892 -0.117436 44 1 0 5.240355 0.601247 -0.943084 45 6 0 2.442075 3.669514 -1.713807 46 1 0 1.532348 3.107608 -1.864097 47 6 0 2.644087 4.709377 -0.734294 48 1 0 1.902980 5.072291 -0.032612 49 6 0 4.005645 5.166574 -0.843730 50 1 0 4.472019 5.931524 -0.234710 51 6 0 4.646303 4.409775 -1.889109 52 1 0 5.677801 4.504446 -2.200412 53 6 0 3.681880 3.484714 -2.426028 54 1 0 3.857351 2.766471 -3.217092	42	1	0	6.695914	2.481513	0.343537
4410 5.240355 0.601247 -0.943084 45 60 2.442075 3.669514 -1.713807 46 10 1.532348 3.107608 -1.864097 47 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60 4.005645 5.166574 -0.843730 50 10 4.472019 5.931524 -0.234710 51 60 4.646303 4.409775 -1.889109 52 10 5.677801 4.504446 -2.200412 53 60 3.681880 3.484714 -2.426028 54 10 3.857351 2.766471 -3.217092	43	6	0	4.899351	1.217892	-0.117436
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1	0	5.240355	0.601247	-0.943084
4610 1.532348 3.107608 -1.864097 47 60 2.644087 4.709377 -0.734294 48 10 1.902980 5.072291 -0.032612 49 60 4.005645 5.166574 -0.843730 50 10 4.472019 5.931524 -0.234710 51 60 4.646303 4.409775 -1.889109 52 10 5.677801 4.504446 -2.200412 53 60 3.681880 3.484714 -2.426028 54 10 3.857351 2.766471 -3.217092	45	6	0	2.442075	3.669514	-1.713807
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	1	0	1.532348	3.107608	-1.864097
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	6	0	2.644087	4.709377	-0.734294
49 6 0 4.005645 5.166574 -0.843730 50 1 0 4.472019 5.931524 -0.234710 51 6 0 4.646303 4.409775 -1.889109 52 1 0 5.677801 4.504446 -2.200412 53 6 0 3.681880 3.484714 -2.426028 54 1 0 3.857351 2.766471 -3.217092	48	1	0	1.902980	5.072291	-0.032612
50 1 0 4.472019 5.931524 -0.234710 51 6 0 4.646303 4.409775 -1.889109 52 1 0 5.677801 4.504446 -2.200412 53 6 0 3.681880 3.484714 -2.426028 54 1 0 3.857351 2.766471 -3.217092	49	6	0	4.005645	5.166574	-0.843730
51 6 0 4.646303 4.409775 -1.889109 52 1 0 5.677801 4.504446 -2.200412 53 6 0 3.681880 3.484714 -2.426028 54 1 0 3.857351 2.766471 -3.217092	50	1	0	4.472019	5.931524	-0.234710
52 1 0 5.677801 4.504446 -2.200412 53 6 0 3.681880 3.484714 -2.426028 54 1 0 3.857351 2.766471 -3.217092	51	6	0	4.646303	4.409775	-1.889109
53 6 0 3.681880 3.484714 -2.426028 54 1 0 3.857351 2.766471 -3.217092	52	1	0	5.677801	4.504446	-2.200412
54 1 0 3 857351 2 766471 -3 217092	53	6	0	3.681880	3.484714	-2.426028
51 1 0 5.057551 2.700171 5.217072	54	1	0	3.857351	2.766471	-3.217092

55	6	0	2.480459	0.299426	0.097092
56	6	0	2.510397	-0.954197	-0.440674
57	6	0	3.727704	-1.740118	-0.759038
58	6	0	4.646987	-2.106721	0.315326
59	16	0	6.180165	-3.006862	-0.115135
60	6	0	4.562074	-1.910485	1.684553
61	1	0	3.727683	-1.395668	2.154073
62	6	0	5.673483	-2.436623	2.422381
63	1	0	5.765469	-2.368625	3.502721
64	6	0	6.617038	-3.042718	1.626165
65	1	0	7.542920	-3.521695	1.922114
66	6	0	0.113524	0.042912	-0.016376
67	6	0	-1.771001	-1.989521	3.043862
68	6	0	0.642895	-0.752775	2.768506
69	6	0	0.304742	-3.232364	1.409449
70	6	0	-3.167291	-3.261821	0.743879
71	6	0	-3.677363	-2.274640	-1.866532
72	6	0	-1.659247	-4.173182	-1.330183
73	6	0	-1.114467	-1.239795	-2.227214
74	6	0	1.283547	-3.400030	-1.652363
75	6	0	1.424790	-0.832738	-2.714273
76	8	0	-4.021022	-0.655881	1.948429
77	8	0	3.939335	-2.150365	-1.938701
78	8	0	-2.348247	-2.272955	4.020424
79	8	0	1.438595	-0.275448	3.490530
80	8	0	0.801574	-4.300582	1.468043
81	8	0	-3.839736	-3.853698	1.500774
82	8	0	-4.609522	-2.256862	-2.575628
83	8	0	-1.398040	-5.232437	-1.756517

84	8	0	-1.486975	-0.604500	-3.170396
85	8	0	1.704290	-4.458842	-1.921810
86	8	0	1.866135	-0.307631	-3.664281
87	8	0	1.209773	0.863715	0.310315

Center	Atomic	Atomic	Coo	rdinates (Angstro	ms)
Number	Number	Туре	Х	Y	Z
1	44	0	-0.762950	-1.178198	1.394063
2	44	0	-0.728721	-1.177692	-1.446095
3	26	0	3.047435	-3.703959	-0.190909
4	26	0	-4.822902	0.799434	-0.159900
5	8	0	2.199015	0.474328	2.745697
6	8	0	6.849633	5.121902	0.187283
7	8	0	5.988108	4.847364	-1.900345
8	8	0	-0.625875	2.307066	2.691666
9	8	0	0.858070	-2.784646	3.554655
10	8	0	-2.945276	-0.514574	3.555877
11	8	0	-2.227243	-3.757157	0.396686
12	8	0	0.444026	0.815318	-3.545945
13	8	0	0.148549	-3.868718	-2.922580
14	8	0	-3.481105	-1.795268	-2.941145
15	7	0	6.015748	4.589040	-0.637696
16	7	0	0.166444	7.492425	-1.196511
17	1	0	0.166096	8.360291	-0.650071
18	1	0	0.283428	7.568635	-2.212593
19	6	0	2.352638	-1.620480	-0.294003
20	6	0	2.974634	-2.037103	-1.568146
21	1	0	2.488237	-2.019377	-2.553236
22	6	0	4.359134	-2.417786	-1.313455
23	1	0	5.077124	-2.773679	-2.067275
24	6	0	4.611446	-2.275677	0.118788
25	1	0	5.549193	-2.520173	0.639815

Table S3. The geometries parameter of 5c.

B3LYP/LanL2DZ/6-31G

 26	6	0	3.384989	-1.802757	0.751073
27	1	0	3.250981	-1.633526	1.827573
28	б	0	1.483305	-5.154194	0.196259
29	1	0	0.406883	-4.939448	0.266031
30	6	0	2.208878	-5.522303	-1.019624
31	1	0	1.778288	-5.609025	-2.026875
32	6	0	3.610540	-5.730497	-0.661428
33	1	0	3.610540	-5.730497	-0.661428
34	6	0	3.751229	-5.492002	0.775649
35	1	0	4.687387	-5.544778	1.351868
36	6	0	2.435180	-5.136709	1.306860
37	1	0	2.206521	-4.880591	2.351914
38	6	0	0.948129	0.302581	0.644749
39	6	0	1.031025	-0.899205	-0.177787
40	6	0	2.100459	0.826330	1.529613
41	6	0	3.107612	1.794866	0.926284
42	6	0	4.057048	2.417187	1.806403
43	1	0	4.020277	2.170577	2.882179
44	6	0	5.015150	3.332877	1.300711
45	1	0	5.749133	3.828501	1.957856
46	6	0	5.016562	3.614506	-0.096965
47	6	0	4.096837	3.005266	-0.996117
48	1	0	4.139594	3.250759	-2.070094
49	6	0	3.138045	2.093556	-0.475705
50	1	0	2.420405	1.612725	-1.163032
51	6	0	-2.683468	1.270183	-0.338622
52	6	0	-3.342243	2.098122	0.694862
53	1	0	-3.088190	2.116180	1.763495
54	6	0	-4.393931	2.884559	0.062117

 55	1	0	-5.068998	3.585170	0.575867
56	6	0	-5.068998	3.585170	0.575867
57	1	0	-5.121732	2.946118	-2.108465
58	6	0	-3.393536	1.542179	-1.604501
59	1	0	-3.153939	1.101649	-2.581796
60	6	0	-5.237181	-1.225930	0.486492
61	1	0	-4.485144	-1.997885	0.704558
62	6	0	-5.786552	-0.267664	1.445257
63	1	0	-5.500501	-0.175012	2.503226
64	6	0	-6.760027	0.565534	0.738047
65	1	0	-7.334425	1.397743	1.172641
66	6	0	-6.811086	0.120043	-0.654945
67	1	0	-7.431931	0.556495	-1.452264
68	6	0	-5.870696	-0.987510	-0.810535
69	1	0	-5.666736	-1.535230	-1.741139
70	6	0	-0.322326	1.058207	0.608943
71	6	0	-1.390924	0.502586	-0.210067
72	6	0	-0.433200	2.369846	1.428326
73	6	0	-0.272123	3.673094	0.710985
74	6	0	-0.116171	3.774707	-0.716412
75	1	0	-0.121495	2.861976	-1.339295
76	6	0	0.027052	5.030218	-1.351517
77	1	0	0.138067	5.085809	-2.451667
78	6	0	0.022950	6.246795	-0.575177
79	6	0	-0.133399	6.151173	0.859093
80	1	0	-0.139021	7.076248	1.467431
81	6	0	-0.279246	4.892544	1.480216
82	1	0	-0.402408	4.817058	2.576120
83	6	0	0.243098	-2.166533	2.738937

84	6	0	-2.119005	-0.766911	2.732351
85	6	0	-1.636946	-2.709718	0.518048
86	6	0	-0.019770	0.028696	-2.770221
87	6	0	-2.500045	-1.519053	-2.324466
88	6	0	-0.116786	-2.883901	-2.307534

ORTEP view of cluster **1d** showing 50% ellipsoids. Selected bond lengths (Å) and bond angles (°): Ru1-Ru2 = 2.7141(3), Ru1-C31 = 2.0957(21), Ru1-C12 = 2.0668(21), Ru2-C11 = 2.2647(22), Ru2-C12 = 2.2655(21), Ru2-C30 = 2.2848(22), Ru2-C31 = 2.2717(22), C30-C31 = 1.4151(30), C11-C30 = 1.4868(31), C11-C12 = 1.4088(30), C12-C13 = 1.4916(31), C31-C32 = 1.4979(31), C32-O2 = 1.2207(29), C13-O1 = 1.2195(28).

Fig. S1. The crystal structure of compound 1d.

ORTEP view of cluster **2a** showing 50% ellipsoids. Selected bond lengths (Å) and bond angles (°): Ru1-Ru2 = 2.7500(5), Ru2-Ru3 = 2.7282(5), Ru1-Ru3 = 2.8111(5), Ru1-C11 = 2.0969(25), Ru1-C27 = 2.2763(33), Ru2-C11 = 2.3335(28), Ru2-C12 = 2.2058(26), Ru3-C12 = 2.1357(28), Ru3-C27 = 2.0583(32), Ru3-C24 = 1.9336(33), C11-C12 = 1.4034(42), C27-O11 = 1.1531(42), C24-O8 = 1.1469(39), Ru1-C27-Ru3 = 80.691(105), Ru2-C24-Ru3 = 70.633(99).

Fig. S2. The crysta	l structure of	compound 2a.
---------------------	----------------	--------------

ORTEP view of cluster $2b \cdot 1/2C_6H_{14}$ showing 50% ellipsoids (Solvent molecules have been omitted for clarity). Selected bond lengths (Å) and bond angles (°): Ru1-Ru2 = 2.7517(5), Ru1-C28 = 2.0948(53), Ru1-C12 = 2.0805(55), Ru2-C11 = 2.2810(46), Ru2-C12 = 2.2071(40), Ru2-C28 = 2.2790(4), Ru2-C29 = 2.2594(44), C28-C29 = 1.4209(80), C11-C29 = 1.4507(70), C11-C12 = 1.4225(78), C12-C13 = 1.4845(75), C29-C30 = 1.5273(77), C30-O2 = 1.2094(50), C13-O1 = 1.2298(56), Ru1-C39-Ru2 = 68.077(184).

Fig. S3. The crystal structure of compound $2b \cdot 1/2C_6H_{14}$.

ORTEP view of cluster 2c showing 50% ellipsoids. Selected bond lengths (Å) and bond angles (°): Ru1-Ru2 = 2.7681(17); Ru2-Ru3 = 2.8236(16); Ru1-Ru3 = 2.8212(16); Ru1-C11 = 2.3280(15); Ru1-C35 = 2.2528(17); Ru1-C12 = 2.2437(15); Ru2-C42 = 2.2220(17); Ru3-C29 = 2.0750(14); Ru3-C35 = 2.0356(16); C11-C12 = 1.4295(19); C11-C35 = 1.4450(21); C35-O3 = 1.3687(18); C28-O3 = 1.3726(187); C28-C29 = 1.3615(22); C29-C30 = 1.4899(22); C30-O2 = 1.2261(19); C12-C13 = 1.4987(19); C13-O1 = 1.2347(17); Ru2-C42-Ru3 = 83.226(62); Ru3-C35-O3 = 115.182(10); Ru3-C35-C11 = 128.792(11).

Fig. S4. The crystal structure of compound 2c.

ORTEP view of cluster **4d** showing 50% ellipsoids. Selected bond lengths (Å) and bond angles (°): Ru1-Ru2 = 2.7165(9), Ru1-C11 = 2.2893(73), Ru1-C12 = 2.2202(68), Ru1-C30 = 2.2714(61), Ru1-C31 = 2.2192(53), Ru1-C41 = 1.8915(63), Ru2-C12 = 2.0853(52), Ru2-C31 = 2.0767(55), Ru2-C41 = 2.6670(66), C11-C12 = 1.4268(61), C11-C30 = 1.4568(77), C30-C31 = 1.4303(90), C12-C13 = 1.4880(73), C31-C32 = 1.4927(79), C32-O2 = 1.2360(93), C13-O1 = 1.2374(70), Ru1-C41-Ru2 = 70.839(183), Ru1-C41-O5 = 169.979(509).

Fig. S5. The crystal structure of compound 4d.

DFT-optimized structure of **5c** at the level of B3LYP/LanL2DZ/6-31G. Selected bond lengths (Å) and bond angles (°): Ru1-Ru2 = 2.7885, Ru1-C39 = 2.3595, Ru1-C38 = 2.3436, Ru1-C70 = 2.3392, Ru1-C71 = 2.3729, Ru1-C85 = 1.9265, Ru2-C39 = 2.1380, Ru2-C71 = 2.1448, Ru2-C85 = 2.6546, C38-C39 = 1.4303, C38-C70 = 1.4502, C70-C71 = 1.4308, Ru1-C85-Ru2 = 73.04.

Fig.	S6.	The	DFT	-optimized	structure	of	compound	5c.
------	-----	-----	-----	------------	-----------	----	----------	-----

¹H NMR spectrum of compound **1d**.

¹H NMR spectrum of compound **2b**.

¹H NMR spectrum of compound **4d**.

Calculated ¹H NMR spectrum of compound **5c**.

¹H NMR spectrum of compound **6a**.

 $^{13}C{1H}$ NMR spectrum of compound **1b**.

 $^{13}C{1H}$ NMR spectrum of compound 1d.

 $^{13}C{1H}$ NMR spectrum of compound **2b**.

 $^{13}C{1H}$ NMR spectrum of compound **2d**.

 $^{13}C{1H}$ NMR spectrum of compound **3b**.

 $^{13}C{1H}$ NMR spectrum of compound **3d**.

 $^{13}C{1H}$ NMR spectrum of compound **4b**.

 $^{13}C{1H}$ NMR spectrum of compound 4d.

 $^{13}C{1H}$ NMR spectrum of compound **5b**.

 $^{13}C{1H}$ NMR spectrum of compound **5c**.

Calculated $^{13}C{1H}$ NMR spectrum of compound **5c**.

 $^{13}C{1H}$ NMR spectrum of compound **6a**.

IR spectrum of compound 1b.

0

4000

Wavenumber(cm⁻¹)

1000

500

IR spectrum of compound 1d.

IR spectrum of compound **2b**.

IR spectrum of compound 2c.

IR spectrum of compound 2d.

IR spectrum of compound 3a.

IR spectrum of compound **3b**.

IR spectrum of compound 3c.

IR spectrum of compound 3d.

IR spectrum of compound 4a.

IR spectrum of compound 4b.

IR spectrum of compound 4c.

IR spectrum of compound 4d.

IR spectrum of compound **5b**.

Calculated IR spectrum of compound 5c.

IR spectrum of compound 6a.