Electronic Supplementary Information

Flaky Nano-Crystalline SnSe₂ Thin Films for Photoelectrochemical Current Generation

Xiuyuan Shao, †* Shisheng Li, †* and Dai-Ming Tang

Figure S1. (a-d) SEM images of the cross section of SnSe₂ nanoflakes grown on FTO glass. (c, d) High-magnification SEM images showing the tilted SnSe₂ flakes and their connection with FTO glass.

Figure S2. (a) UV-vis absorbance, (b) transmittance spectrum and (c) Tauc plot of flaky SnSe₂ on FTO substrate.

S3. (a) A SEM image of as-grown $SnSe_2$ nanoflakes on FTO glass. (b, c) EDX spectra of a $SnSe_2$ flake and the FTO substrate.

Figure S4. (a) Dark field TEM image of two stacked SnSe₂ nanoflakes. (b, c) Corresponding EDX maps of (b) Se and (c) Sn.

Figure S5. Schematic illustration of a PEC with SnSe₂/FTO electrode, Pt mesh and Ag/AgCl as working electrode, counter electrode and reference electrode, respectively.

Figure S6. Linear voltammograms of $SnSe_2/FTO$ and bare FTO in the dark and under illumination, excludes the photocurrent contribution from FTO.

Figure S7. Plot of APCE spectra (red line) and transmittance spectra (blue line) versus wavelength at the potential of 0 V vs. Ag/AgCl electrode.

Dividing the IPCE by light harvesting efficiency, we can get the APCE efficiency (absorbed photon-to-current efficiencies), which is the internal efficiency value of the sample.

$$APCE = \frac{IPCE}{(1 - T(\%))}$$

Where T(%) is the transmittance. Here we ignore the effect of reflectance, since it is ignorable when compared with the absorbance.