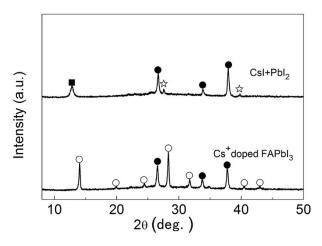
Supporting Information

Localized Incorporation of Cesium Ions for Improving Formamidinium Lead Iodide Layers in Perovskite Solar Cells


Yebin Xue^a, Jiaqi Tian^a, Haiyue Wang^a, Honggang Xie^a, Shanshan Zhu^a, Bo Zheng^a,

Chunxiao Gao^b, Xizhe Liu*^a

^aInstitute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012, China

^bState Key Laboratory for Superhard Materials, Jilin University, Changchun, 130012, China

*Corresponding Author. E-mail address: (L. X.) liu xizhe@jlu.edu.cn

Fig. S1 X-ray diffraction patterns for the deposition process of mixed solution doping method, diffraction peaks of FTO, CsI, PbI₂ and α -FAPbI₃ are labelled with solid circles, open asterisks, solid squares and open circles, respectively.

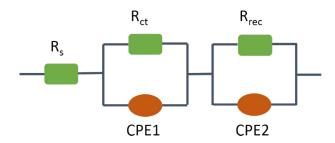
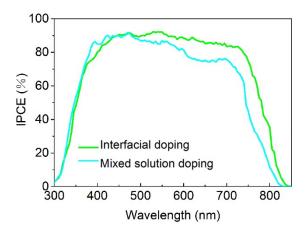
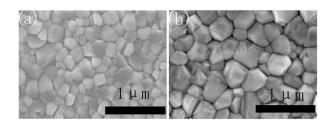




Fig. S2 The equivalent circuit for fitting impedance spectra.

Fig. S3 The IPCE spectra of Cs_xFA_{1-x}PbI₃ devices fabricated by interfacial doping method and mixed solution doping method.

Fig. S4 The surface morphology of Cs_xFA_{1-x}PbI₃ layers prepared by (a) mixed solution doping method and (b) interfacial doping method.

Table S1 The photovoltaic parameters of devices prepared by interfacial doping method with different CsI doping layers.

Devices	J _{sc} (mAcm ⁻²)	V _{oc} (V)	FF	PCE(%)
W/O CsI	20.1	1.01	0.66	13.4
CsI50	23.0	1.05	0.71	17.1
CsI100	19.5	0.98	0.67	12.7
CsI200	17.1	0.90	0.64	9.8