Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

For submission to RSC Advance

Supplementary information

Biomethanation of blast furnace gas using anaerobic granular sludge via addition of hydrogen

Ying Wang^a, Ye Liu^a, Chenzhu Yin^a, Mengjiao Tan^a, Kazuya Shimizu^a, Zhongfang Lei^a, Zhenya Zhang^{a,*}, Ikuhiro Sumi^b, Yasuko Yao^c, Yasuhiro Mogi^b

^a Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1,

Tennodai, Tsukuba, Ibaraki 3058572, Japan

^b JFE steel cooperation, 1, Kawasaki-cho, chuo-ku, Chiba 2600835, Japan

^c JFE Techno-Research cooperation, 2-7-1 Otemachi, Chiyoda-ku, Tokyo 1000004,

Japan

*Corresponding author.

Prof. Zhenya Zhang

Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1,

Tennodai, Tsukuba, Ibaraki 3058572, Japan

Tel.: +8129 853 4712; Fax: +8129 853 4712.

Email address: <u>zhang.zhenya.fu@u.tsukuba.ac.jp</u> (Z.Zhang).

Runs	Methanogenic activities	Sodium acetate (mM)	The v (ml)	volume	of gas	Total pressure
			СО	CO ₂	H_2	(supplied by N ₂)(atm)
R0	Control	-	-	-	-	
R1	Acetoclastic	30	-	-	-	1
R2	Hydrogenotrophic	-	-	30	120	2.5
R3	Carboxydotrophic-a	-	12	-	-	1
R4	-	-	12	-	38.4	1
R5	Carboxydotrophic-b	-	12	9.6	38.4	1

 $\textbf{Table. S1} \ \text{The experimental conditions of methanogenic potential of AGS}$

Table. S2 The experimental conditions about effect of exogenous H_2 partial pressures on methane production from blast furnace gas.

H ₂ partial pressure	The	Total pressure (supplied by		
(atm)	СО	CO_2	H_2	N ₂)(atm)
0.04	13.2	13.2	2.4	
0.88	13.2	13.2	52.8	2.6
1.54	13.2	13.2	92.4	

Fig. S1 Pathways from CO to CH_4 in the presence of BES: (1) carboxydotrophic hydrogenogenesis, (2) carboxydotrophic acetogenesis, (3) homoacetogenesis, (4) syntrophic acetate oxidation, (5) carboxydotrophic methanogenesis, (6) hydrogenotrophic methanogenesis, and (7) acetoclastic methanogenesis.

Fig. S2. Anaerobic biomethanation potential of AGS under 37°C (R0-control, R1-sodium acetate, R2-H₂/CO₂, R3-CO/N₂, R4-CO/H₂; R5-CO/CO₂/H₂) (a) CH₄, (b) CO, and (c) CO₂.

Fig. S3. Effect of CO partial pressures (atm) on methane production from CO.

Fig. S4. Effect of H_2 partial pressures (atm) on VFAs distribution during BFG fermentation by AGS under 37°C.