Supporting Information

Exploration of immobilization conditions of cellulosic

lyotropic liquid crystal in monomeric solvents by in-situ

polymerization and achievement of dual mechanochromism at

room temperature

Kazuma MIYAGI,^a Yoshikuni TERAMOTO*,a,b,c

^{*a.*} Science of Biological Resources, The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan.

^{b.} Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.

^{c.} Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193.

* To whom correspondence should be addressed: teramoto@gifu-u.ac.jp

Figure S1 ¹H NMR spectrum of PHPC in CDCl₃.

Figure S2 Visual appearances and UV-Vis spectra of PHPC/EMA, PHPC/MA, and PHPC/EA solutions. Numerals inserted represent the concentrations (wt%) of PHPC in the solutions.

Figure S3 Solid-state ¹³C CP/MAS NMR spectra of 76-wt% (a) PHPC/PiPMA, (b) PHPC/PMMA, and (c) PHPC/PACMO films.

Figure S3 (Continued).

Figure S4 SEM images of fracture surface morphologies of 76 wt% (a) PHPC/PiPMA and (b) PHPC/PACMO films. Scale bar denotes 1 μ m.

Figure S5 CD spectra of 76 wt% PHPC/PACMO film after the compression at 30°C and subsequent heat treatment at 100°C for 0 s (----), 5 s (----), and 10 s (-----) with the spectrum of the as-polymerized one (-----).