Supporting Information

H₂O₂/HBr system - several directions but one choice: oxidation-bromination of secondary alcohols into mono- or dibromo ketones

Gennady I. Nikishin, Nadezhda I. Kapustina, Liubov L. Sokova, Oleg V. Bityukov, Alexander O. Terent'ev*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation, Fax: +7 499 1355328

*e-mail: terentev@ioc.ac.ru

Table of contents

General materials and methods	S3
Experimental for Table 1	S3
Experimental for Table 2	S3
Experimental for Table 3	S4
Characterization of the products	S5
References	S13
Copies of ¹ H, ¹³ C NMR and HRMS spectra of synthesized products	S14

General materials and methods

¹H and ¹³C NMR spectra were recorded on Bruker AVANCE II 300 spectrometer (300.13 and 75.48 MHz, respectively) in CDCl₃. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: ¹H (CDCl₃ δ =7.26 ppm), ¹³C (CDCl₃ δ =77.16 ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet).

High resolution mass spectra (HR-MS) were measured on a Bruker micrOTOF II instrument using electrospray ionization (ESI). The measurements were performed in a positive ion mode (interface capillary voltage – 4500 V); mass range from m/z 50 to m/z 3000 Da; external calibration with Electrospray Calibrant Solution (Fluka). A syringe injection was used for all acetonitrile solutions (flow rate 3 μ L/min). Nitrogen was applied as a dry gas; interface temperature was set at 180 °C.

GC analysis was performed on a Chrom-5 chromatograph with the flame-ionization detector and 3x3000 mm analytical glass columns with 5% SE-30 and 5% FFAP on Chromaton N-AW-HMDS (0.16-0.20 mm). The product yields were determined by an internal standard method with the empirical correlation coefficients.

The TLC analysis was carried out on standard silica gel chromatography plates (DC-Fertigfolien ALUGRAM^R Xtra SIL G/UV₂₅₄). Column chromatography was performed using silica gel (0.060-0.200 mm, 60 A, CAS 7631-86-9, Acros).

Petroleum ether (PE, 40/70), MeOH, THF, dichloroethane (DCE) were distilled prior to use. MeCN were distilled over P_2O_5 . EtOAc were purchased from commercial sources and were used as is.

Pentan-3-ol (1a), 2,4-dimethylpentan-3-ol (1h), nonan-4-ol (1f), 2-methyloctan-3-ol (1g), 1phenylhexan-1-ol (4c), HBr (48% solution in water), H_2O_2 (35% aqueous solution), Na_2SO_4 , Na_2SO_3 were commercial reagents (Acros, Sigma-Aldrich). Other secondary alcohols were synthesized according to the literature¹.

Experimental for Table 1

To a solution of alcohol **1a** (1 mmol, 88.2 mg) and HBr (48% aqueous, 1.2-6 mmol, 0.136-0.679 ml) in 1 ml of solvent at 65-70 °C and vigorous stirring, a solution of H_2O_2 (35% aqueous, 10-15

mmol, 0.860-1.290 ml) was added portionwise (0.2-0.3 ml) during 6-10 h. After the addition of the first portion, brown vapors and a bright orange color of the reaction mass were observed. The next portions of H_2O_2 were added after the decolorization of the reaction mixture (a pale-yellow color), then the reaction mass was cooled, diethyl ether (15 mL) and Na₂SO₃ (1 g) were added. The organic layer was decanted and washed with water (5 ml), then dried over Na₂SO₄. The solvent was evaporated in a vacuum of a water jet pump (20 mmHg). Yields **2a**, **3a** and **7a** were determined by GLC using heptan-4-one and undecane-6-one as the internal standards.

Experimental for the Table 2

To a solution of alcohol **1a-h**, **4a-e** (1 mmol, 88.2-256.5 mg) and HBr (48% aqueous, 1.2 mmol, 0.136 ml) in CH₃CN (1 ml) at 65-70 °C and vigorous stirring, a solution of H₂O₂ (35% aqueous, 10 mmol, 0.860 ml) in CH₃CN (1 ml) was added portionwise (0.2-0.3 ml) for 6 hours. After the addition of the first portion, brown vapors and a bright orange color of the reaction mass were observed. The next portions of H₂O₂ were added after the decolorization of the reaction mixture (a pale-yellow color), then the reaction mass was cooled, diethyl ether (15 mL) and Na₂SO₃ (1 g) were added. The organic layer was decanted and washed with water (5 ml), then dried over Na₂SO₄. The solvent was evaporated in a vacuum of a water jet pump (20 mmHg). The products **2a-h** and **5a-e** were isolated by column chromatography on silica gel in a solvent system PE: EA (100:1).

Experimental for the Table 3

To a solution of alcohol **1a-h**, **4a-e** (1 mmol, 88.2-256.5 mg) and HBr (48% aqueous, 6 mmol, 0.679 ml) in CH₃CN (1 ml) at 65-70 °C and vigorous stirring, a solution of H₂O₂ (35% aqueous, 15 mmol, 1.290 ml) in CH₃CN (1 ml) was added portionwise (0.2-0.3 ml) for 6 hours. After the addition of the first portion, brown vapors and a bright orange color of the reaction mass were observed. The next portion of hydrogen peroxide was added after the decolorization of the reaction mixture (a pale-yellow color), then the reaction mass was cooled, diethyl ether (15 mL) and Na₂SO₃ (1 g) were added. The organic layer was decanted and washed with water (5 ml) and then dried over Na₂SO₄. The solvent was evaporated in a vacuum of a water jet pump (20 mmHg). The products **3a-g** and **6a,b,d,e** were isolated by column chromatography on silica gel in a solvent system PE: EA (100:1).

Characterization of the products

All the new compounds were characterized using ¹H and ¹³C NMR spectroscopy, HR-MS spectroscopy. ¹H and ¹³C NMR spectra of the known compounds were in agreement with the literature data²⁻¹¹.

2-Bromopentan-3-one, 2a9

Colorless oil (130 mg, 79%)

¹H NMR (300.13 MHz, CDCl₃) δ: 1.10 (t, 3H, CH₃, *J* = 7.2 Hz), 1.72 (d, 3H, <u>CH₃</u>CHBr, *J* = 6.9 Hz), 2.51-2.65 (m, 1H, CH₂), 2.78-2.92 (m, 1H, CH₂), 4.40 (q, CHBr, *J* = 6.9 Hz); ¹³C NMR (75.47 MHz, CDCl₃) δ: 8.17 (CH₃), 20.14 (<u>CH₃CHBr</u>), 31.95 (CH₂), 47.26 (CHBr), 205.09 (CO).

3-Bromoheptan-4-one, 2b¹⁰

Colorless oil (158 mg, 82%)

¹H NMR (300.13 MHz, CDCl₃) δ : 0.93 (t, 3H, CH₃, J = 7.3 Hz), 1.00 (t, 3H, CH₃, J = 7.3 Hz), 1.58-1.70 (m, 2H, CH₂), 1.90-2.07 (m, 2H, <u>CH₂CHBr</u>), 2.57-2.71 (m, 2H, CH₂CO), 4.16 (dd, 1H, CHBr, J = 6.4 Hz, J = 8.0 Hz);

¹³C NMR (75.47 MHz, CDCl₃) δ: 11.97 (CH₃), 13.58 (CH₃), 17.39 (CH₂), 26.88 (<u>C</u>H₂CHBr), 40.90 (<u>C</u>H₂CO), 55.48 (CHBr), 204.21 (CO).

4-Bromononan-5-one, 2c¹¹

Colorless oil (161 mg, 73%)

¹H NMR (300.13 MHz, CDCl₃) δ : 0.88-0.95 (m, 6H, 2CH₃), 1.28-1.61 (m, 6H, 3CH₂), 1.84-2.00 (m, 2H, <u>CH₂CHBr</u>), 2.56-2.75 (m, 2H, CH₂CO), 4.23 (dd, 1H, CHBr, J = 6.5 Hz, J = 8.0 Hz); ¹³C NMR (75.47 MHz, CDCl₃) δ : 13.39 (CH₃), 13.78 (CH₃), 20.60 (CH₂), 22.18 (CH₂), 26.04 (CH₂), 35.39 (<u>CH₂CHBr</u>), 38.64 (<u>CH₂CO</u>), 53.53 (CHBr), 204.37 (CO).

5-Bromoundecan-6-one, 2d^{7, 10}

Colorless oil (201 mg, 81%)

¹H NMR (300.13 MHz, CDCl₃) δ: 0.86-0.92 (m, 6H, 2CH₃), 1.25-1.46 (m, 8H, 4CH₂), 1.55-1.65 (m, 2H, CH₂), 1.85-2.04 (m, 2H, <u>CH₂</u>CHBr), 2.57-2.72 (m, 2H, CH₂CO), 4.22 (dd, 1H, CHBr, *J* = 6.7 Hz, *J* = 7.9 Hz);

¹³C NMR (75.47 MHz, CDCl₃) δ: 13.80 (CH₃), 13.87 (CH₃), 22.10 (CH₂), 22.40 (CH₂), 23.64 (CH₂), 29.47 (CH₂), 31.23 (CH₂), 33.18 (<u>C</u>H₂CHBr), 38.91 (<u>C</u>H₂CO), 53.79 (CHBr), 204.40 (CO).

8-Bromoheptadecan-9-one, 2e

Colorless oil (213 mg, 64%)

¹H NMR (300.13 MHz, CDCl₃) δ: 0.87 (t, 6H, 2CH₃, *J* = 6.6 Hz), 1.27 (m, 20H, CH₂), 1.58-1.62 (m, 2H CH₂), 1.88-1.97 (m, 2H, C<u>H</u>₂CHBr), 2.58-2.72 (m, 2H, CH₂CO), 4.22 (t, 1H, CHBr, *J* = 7.3 Hz);

¹³C NMR (75.47 MHz, CDCl₃) δ: 14.03 (CH₃), 14.05 (CH₃), 22.58 (CH₂), 22.63 (CH₂), 23.99 (CH₂), 27.36 (CH₂), 28.95 (CH₂), 28.98 (CH₂), 29.08 (CH₂), 29.11 (CH₂), 29.31 (CH₂), 31.68 (CH₂), 31.81 (CH₂), 33.49 (CH₂), 38.95 (<u>C</u>H₂CO), 53.84 (CHBr), 204.41 (CO);

HRMS (ESI) m/z [M+Na]⁺: Calcd for [C₁₇H₃₃BrNaO]⁺: 355.1607. Found: 355.1603.

HRMS-ESI: calculated 355.1607 (⁷⁹Br) and 357.1587 (⁸¹Br) $[C_{17}H_{33}BrNaO]^+$ found 355.1603 (⁷⁹Br) and 357.1584 (⁸¹Br)

2-Bromo-2,4-dimethylpentan-3-one, 2h¹⁰

Colorless oil (168 mg, 87%)

¹H NMR (300.13 MHz, CDCl₃) δ: 1.16 (d, 6H, 2CH₃, *J* = 6.6 Hz), 1.85 (s, 6H, 2CH₃), 3.37-3.50 (m, 1H CH);

¹³C NMR (75.47 MHz, CDCl₃) δ: 20.89, 29.30, 34.54, 64.56, 209.93.

Mixture of 3-bromononan-4-one (2f) and 5-bromononan-4-one (2f')⁵ (ratio 2f : 2f' according to NMR spectroscopy data $\sim 1 : 1$)

Colorless oil (172 mg, 78%)

¹H NMR (300.13 MHz, CDCl₃) δ: 0.86-0.95 (m, 9H, 3CH₃), 1.00 (t, 3H, CH₃, *J* = 7.3 Hz), 1.23-1.39 (m, 8H, 4CH₂), 1.58-1.70 (m, 4H, 2CH₂), 1.87-2.08 (m, 4H, 2<u>CH₂</u>CHBr), 2.54-2.75 (m, 4H, 2CH₂CO), 4.17 (dd, H, CHBr, *J* = 6.4 Hz), 4.21 (dd, H, CHBr, *J* = 6.3 Hz);

¹³C NMR (75.47 MHz, CDCl₃) δ: 11.97 (CH₃), 13.58 (CH₃), 13.78 (CH₃), 13.87 (CH₃), 17.40 (CH₂), 22.10 (CH₂), 22.40 (CH₂), 23.63 (CH₂), 26.88 (CH₂), 29.46 (CH₂), 31.22 (CH₂), 33.15 (CH₂), 39.00 (CH₂CO), 40.80 (CH₂CO), 53.78 (CHBr), 55.48 (CHBr), 204.23 (CO), 204.34 (CO).

Mixture of 2-bromo-2-methyloctan-3-one (2g) and 4-bromo-2-methyloctan-3-one (2g') (ratio 2g : 2g' according to NMR spectroscopy data ~ 2 : 1)

Colorless oil (181 mg, 82%)

¹H NMR (300.13 MHz, CDCl₃) δ : 0.89 (t, 4.5H, 2CH₃, J = 6.8 Hz), 1.12 (d, 1.5H, CH₃, J = 6.9 Hz), 1.16 (d, 1.5H, CH₃, J = 6.7 Hz), 1.26-1.36 (m, 6H, 4CH₂), 1.56-1.70 (m, 3H, 2CH₂), 1.84 (s,

6H, 2CH₃), 2.78 (t, 2H, CH₂CO, *J* = 7.3 Hz), 2.97-3.07 (m, 0.5H, CHCO), 4.36 (t, 0.5H, CHBr, *J* = 7.2 Hz);

¹³C NMR (75.47 MHz, CDCl₃) δ: 13.81(CH₃), 13.90 (CH₃), 18.65 (CH₂), 19.36 (CH₂), 22.18 (CH₃), 22.45 (CH₂), 24.44 (CH₂), 29.57 (CH₃), 31.24 (CH₂), 32.98 (CH₂), 36.04 (<u>C</u>H₂CO), 37.97 (<u>C</u>HCO), 51.70 (CHBr), 64.03 (CBr), 205.75 (CO), 207.63 (CO).

HRMS-ESI: calculated 243.0355 (⁷⁹Br) and 245.0335 (⁸¹Br) $[C_9H_{17}BrNaO]^+$ found 243.0348 (⁷⁹Br) and 245.0340 (⁸¹Br)

1-Bromo-3,3-dimethylbutan-2-one, 5a9

Colorless oil (163 mg, 91%)

¹H NMR (300.13 MHz, CDCl₃) δ: 1.21 (s, 9H, CH₃), 4.16 (s, 2H, CH₂);

¹³C NMR (75.47 MHz, CDCl₃) δ: 26.70 (3CH₃), 31.60 (CH₂Br), 44.21 (<u>C</u>(CH₃)₃), 206.03 (CO).

2-Bromo-1-phenylethanone, 5b⁸

Pale yellow powder (169 mg, 85%); mp = 48-50 °C.

¹H NMR (300.13 MHz, CDCl₃) δ: 4.45 (s, 2H, CH₂Br), 7.48 (t, 2H, 2CH, *J* = 7.3 Hz), 7.60 (t, 1H, CH, *J* = 7.3 Hz), 7.98 (d, 2H, 2CH, *J* = 7.3 Hz);

¹³C NMR (75.47 MHz, CDCl₃) δ: 30.88 (CH₂Br), 128.83 (2CH), 128.91 (2CH), 133.93 (2CH), 191.25 (CO).

2-Bromo-1-phenylhexan-1-one, 5c³

Pale yellow oil (196 mg, 77%)

¹H NMR (300.13 MHz, CDCl₃) δ: 0.92 (t, 3H, CH₃, *J* = 7.3 Hz), 1.33-1.53 (m, 4H, 2CH₂), 2.07-2.27 (m, 2H, <u>CH₂CHBr</u>), 5.13 (t, 1H, CHBr, *J* = 7.3 Hz), 7.48 (t,2H, 2CH, *J* = 7.3 Hz), 7.59 (t, 1H, CH, *J* = 7.3 Hz), 8.01 (d, 2H, 2CH, *J* = 7.3 Hz); ¹³C NMR (75.47 MHz, CDCl₃) δ: 13.84 (CH₃), 22.25 (CH₂), 29.63 (CH₂), 33.22 (CH₂), 47.26 (CHBr), 128.73 (2CH), 128.80 (2CH), 133.61(CH), 134.52 (C), 193.27 (CO).

2-Bromo-1-(p-tolyl)ethan-1-one, 5d¹²

White solid (166 mg, 78%); mp 53-54°C

¹H NMR (300.13 MHz, CDCl₃) δ : 2.41 (s, 3H, CH₃), 4.41 (s, 2H; CH₂), 7.27 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 8.0 Hz, 2H);

¹³C NMR (75.47 MHz, CDCl₃) δ: 21.71 (CH₃), 30.90 (CH₂), 129.01 (CH), 129.50 (CH), 131.44 (C), 144.96 (C), 190.90 (CO).

2-Bromo-1-(2-chlorophenyl)ethan-1-one, 5e¹³

Pale yellow oil (121 mg, 52%)

¹H NMR (300.13 MHz, CDCl₃) δ: 4.51 (s, 2H; CH₂), 7.34-7.38 (m, 1H), 7.43-7.44 (m, 2H), 7.54-7.56 (m, 1H);

¹³C NMR (75.47 MHz, CDCl₃) δ: 34.45 (CH₂), 127.13 (CH), 130.25 (CH), 130.57 (CH), 131.30 (CH), 132.73 (C), 136.24 (C), 194.01 (CO).

2,4-Dibromopentan-3-one (mixture of meso- and rac-isomers 1:2), 3a4,9

Colorless oil (192 mg, 79%)

¹H NMR (300.13 MHz, CDCl₃) δ : **pair dl (rac)**: 1.79 (d, 3H, CH₃, *J* = 6.6 Hz), 4.97 (q, 1H, CHBr, *J* = 6.6 Hz), **meso**: 1.86 (d, 3H, CH₃, *J* = 6.6 Hz), 4.76 (q, 1H, CHBr, *J* = 6.6 Hz); ¹³C NMR (75.47 MHz, CDCl₃) δ : **pair dl (rac)**: 19.50 (2CH₃), 43.82 (CHBr), 195.99 (CO), **meso**: 21.74 (2CH₃), 44.01 (CHBr), 197.99 (CO).

3,5-Dibromoheptan-4-one, 3b^{2,9}

Colorless oil (225 mg, 83%)

¹H NMR (300.13 MHz, CDCl₃) δ: **pair dl (rac):** 1.03 (t, 6H, 2CH₃, *J* = 7.3 Hz), 1.94-2.04 (m, 2H, CH₂), 2.12-2.21 (m, 2H, CH₂), 4.65 (t, 2H, CHBr, *J* = 7.3 Hz); ¹³C NMR (75.47 MHz, CDCl₃) δ: **pair dl (rac):** 11.88 (2CH₃), 26.06 (2CH₂), 51.70 (2CHBr), 194.34(CO).

4,6-Dibromononane-5-one, 3c^{6,9}

Colorless oil (264 mg, 88%)

¹H NMR (300.13 MHz, CDCl₃) δ: **pair dl (rac):** 0.97 (t, 6H, CH₃, *J* = 7.3 Hz), 1.38-1.52 (m, 4H, 2CH₂), 1.90-2.01 (m, 2H, CH₂), 2.05-2.15 (m, 2H, CH₂), 4.73 (t, 2H, 2CHBr, *J* = 7.3 Hz); ¹³C NMR (75.47 MHz, CDCl₃) δ: **pair dl (rac):** 13.46 (2CH₃), 20.52 (2CH₂), 34.56 (2CH₂), 49.87 (2CHBr), 194.38 (CO).

5,7-Dibromoundecan-6-one, 3d

Pale yellow oil (242 mg, 74%)

¹H NMR (300.13 MHz, CDCl₃) δ: **pair dl (rac):** 0.91 (t, 6H, 2CH₃, *J* = 6.6 Hz), 1.38-1.45 (m, 8H, 4CH₂), 1.92-1.99 (m, 2H, CH₂), 2.08-2.20 (m, 2H, CH₂), 4.71 (t, 2H, 2CHBr, *J* = 7.3 Hz); ¹³C NMR (75.47 MHz, CDCl₃) δ: **pair dl (rac):** 13.78 (2CH₃), 22.16 (2CH₂), 29.30 (2CH₂), 32.27 (2CH₂), 50.15 (2CHBr), 194.38 (CO);

HRMS-ESI: calculated 350.9753 (⁷⁹Br) and 352.9732 (⁸¹Br) $[C_{11}H_{20}Br_2NaO]^+$ found 350.9749 (⁷⁹Br) and 352.9730 (⁸¹Br)

Pale yellow oil (276 mg, 67%)

¹H NMR (300.13 MHz, CDCl₃) δ : **pair dl (rac):** 0.87 (t, 6H, 2CH₃, *J* = 6.6 Hz), 1.27-1.39 (m, 20H, 10CH₂), 1.92-1.98 (m, 2H, CH₂), 2.07-2.14 (m, 2H, CH₂), 4.71 (t, 2H, 2CHBr, *J* = 7.3 Hz); ¹³C NMR (75.47 MHz, CDCl₃) δ : **pair dl (rac):** 14.05 (2CH₃), 22.59 (2CH₂), 27.19 (2CH₂), 28.98 (2CH₂), 31.69 (2CH₂), 32.55 (2CH₂), 50.19 (2CHBr), 194.40 (CO); HRMS-ESI: calculated 433.0712 (⁷⁹Br) and 435.0692 (⁸¹Br) [C₁₇H₃₂Br₂NaO]⁺ found 433.0716

(⁷⁹Br) and 435.0703 (⁸¹Br)

3,5-Dibromononan-4-one, 3f

Pale yellow oil (216 mg, 72%)

¹H NMR (300.13 MHz, CDCl₃) δ : **pair dl (rac):** 0.91 (t, 3H, CH₃, J = 6.6 Hz), 1.03 (t, 3H, CH₃, J = 7.3 Hz), 1.36-1.39 (m, 4H, 2CH₂), 1.92-2.04 (m, 2H, <u>CH₂CHBr</u>), 2.08-2.21 (m, 2H, <u>CH₂CHBr</u>), 4.65 (t, 1H, CHBr, J = 7.3 Hz), 4.71 (t, 1H, CHBr, J = 7.3 Hz);

¹³C NMR (75.47 MHz, CDCl₃) δ: **pair dl (rac):** 11.89 (CH₃), 13.80 (CH₃), 22.16 (CH₂), 26.04 (CH₂), 29.30 (CH₂), 32.26 (CH₂), 50.09 (CHBr), 51.74 (CHBr), 194.35 (CO);

HRMS-ESI: calculated 320.9460 (⁷⁹Br) and 322.9440 (⁸¹Br) $[C_9H_{16}Br_2NaO]^+$ found 320.9459 (⁷⁹Br) and 322.9440 (⁸¹Br)

2,4-Dibromo-2-methyloctan-3-one, 3g

Pale yellow oil (195 mg, 65%)

¹H NMR (300.13 MHz, CDCl₃) δ: 0.91 (t, 3H, CH₃, *J* = 6.6 Hz), 1.33-1.54 (m, 4H, 2CH₂), 1.88 (s, 3H CH₃), 2.05-2.10 (m, 5H, CH₂, CH₃), 4.94 (t, 1H, CHBr, *J* = 7.3 Hz);

¹³C NMR (75.47 MHz, CDCl₃) δ: 13.78 (CH₃), 22.07 (CH₂), 29.19 (CH₃), 29.39 (CH₃), 31.00 (CH₂), 34.32 (CH₂), 45.65 (CHBr), 64.02 ((CH₃)₂CBr), 198.04 (CO);

HRMS-ESI: calculated 320.9460 (⁷⁹Br) and 322.9440 (⁸¹Br) $[C_9H_{16}Br_2NaO]^+$ found 320.9452 (⁷⁹Br) and 322.9435 (⁸¹Br)

1,1-Dibromo-3,3-dimethylbutan-2-one, 6a9

White crystals (216 mg, 84%); mp = 74-75 °C. ¹H NMR (300.13 MHz, CDCl₃) δ: 1.27 (s 9H, 3CH₃), 6.32 (s, 1H, CHBr₂); ¹³C NMR (75.47 MHz, CDCl₃) δ: 26.79 (2CH₃), 37.34 (CH₃), 43.98 (CHBr₂), 201.52 (CO).

2,2-Dibromo-1-phenylethanone, 6b⁸

White crystals (222 mg, 80%); mp = 35-36 °C.

¹H NMR (300.13 MHz, CDCl₃) δ : 6.72 (s, 1H, CHBr₂), 7.49 (t, 2H, 2CH_{ar}, *J* = 7.3 Hz), 7.62 (t, 1H, CH_{ar}, *J* = 7.3 Hz), 8.06 (d, 2H, 2CH_{ar}, *J* = 7.3 Hz);

¹³C NMR (75.47 MHz, CDCl₃) δ: 39.71(CHBr₂), 128.88 (2CH), 129.61 (2CH), 134.39 (2CH), 185.88 (CO).

2,2-Dibromo-1-(p-tolyl)ethan-1-one, 6d⁸

White crystals (190 mg, 65%); mp 97-98°C

¹H NMR (300.13 MHz, CDCl₃) δ: 2.44 (s, 3H, CH₃), 6.68 (s, 1H; CH), 7.29 (d, *J* = 8.4 Hz, 2H), 7.98 (d, *J* = 8.4 Hz, 2H);

¹³C NMR (75.47 MHz, CDCl₃) δ: 21.81 (CH₃), 39.81 (CH), 128.10 (C), 129.64 (CH), 129.82 (C), 145.70 (C), 185.62 (CO).

2,2-Dibromo-1-(2-chlorophenyl)ethan-1-one, 6e14

Pale yellow oil (146 mg, 47%)

¹H NMR (300.13 MHz, CDCl₃) δ: 6.78 (s, 1H; CH₂), 7.35-7.40 (m, 1H), 7.43-7.47 (m, 2H), 7.59-7.62 (m, 1H);

¹³C NMR (75.47 MHz, CDCl₃) δ: 42.05 (CH), 127.20 (CH), 130.45 (CH), 130.90 (CH), 130.95 (C), 132.97 (CH), 134.07 (C), 188.76 (CO).

Pentan-3-one, 7a

0 ||

Colorless oil (28 mg, 33%)

¹H NMR (300.13 MHz, CDCl₃) δ : 0.97 (t, 6H, 2CH₃, J = 7.3 Hz), 2.35 (t, 4H, 2CH₂, J = 7.3 Hz).

References

- 1. L. F. Tietze and T. Eicher, *Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium*, Wiley-VCH Verlag GmbH & Co. KGaA, 2004.
- 2. R. M. Munavu, J. Org. Chem., 1980, **45**, 3341-3343.
- 3. J. Villieras, M. Rambaud, R. Tarhouni and B. Kirschleger, *Synthesis*, 1981, 68-70.
- 4. J. M. Poirier, Bull. Soc. Chim. Fr., 1982, 2, 1.
- 5. J. Barluenga, L. Llavona, M. Yus and J. M. Concellon, J. Chem. Soc., Perkin Trans. 1, 1991.
- 6. M. Parvez, S. M. H. Kabir, T. S. Sorensen, F. Sun and B. Watson, *Can. J. Chem.*, 2002, **80**, 413-417.
- 7. I. Pravst, M. Zupan and S. Stavber, *Tetrahedron Lett.*, 2006, **47**, 4707-4710.
- 8. A. O. Terent'ev, S. V. Khodykin, I. B. Krylov, Y. N. Ogibin and G. I. Nikishin, *Synthesis*, 2006, 1087-1092.
- 9. G. I. Nikishin, L. L. Sokova and N. I. Kapustina, *Russ. Chem. Bull.*, 2010, **59**, 391-395.
- 10. G. I. Nikishin, L. L. Sokova and N. I. Kapustina, *Russ. Chem. Bull.*, 2013, **62**, 1214-1217.
- 11. K. Moriyama, T. Hamada, Y. Nakamura and H. Togo, *Chem. Commun.*, 2017, **53**, 6565-6568.
- 12. A. K. Macharla, R. C. Nappunni, M. R. Marri, S. Peraka and N. Nama, *Tetrahedron Lett.*, 2012, **53**, 191-195.
- 13. C. Wu, X. Xin, Z. Fu, L. Xie, K. Liu, Z. Wang, W. Li, Z. Yuan and W. He, *Green Chem.*, 2017, **19**, 1983.
- 14. P.Wu, S. Xu, H. Xu, H. Hu and W. Zhang, *Tetrahedron Lett.*, 2017, **58**, 618-621.

Copies of ¹H, ¹³C NMR and HRMS spectra of synthesized products

¹H NMR of 2-bromopentan-3-one, 2a

¹³C NMR of 2-bromopentan-3-one, 2a

Acquisition Time (sec) 0.9006

No.	(ppm)	(Hz)	Height		No.	Annotation	(ppm)
1	8.17	616.7	0.3504		1	Chloroform-d	77.00
2	20.14	1520.1	0.3913			× •	2
3	31.95	2411.4	0.3224				
4	47.26	3566.9	0.2309	1			
5	77.00	5811.7	0.9903				
6	205.09	15479.5	0.1063				

¹H NMR of 3-bromoheptan-4-one, **2b**

Acquisition Time (sec) 1.3518

¹³C NMR of 3-bromoheptan-4-one, **2b**

Acquisition Time (sec) 0.9006

NU.	(bbui)	(112)	Height	14
1	11.97	903.1	0.2666	
2	13.58	1024.7	0.2838	210
3	17.39	1312.3	0.2039	
4	26.88	2028.8	0.2108	
5	40.90	3087.0	0.1821	
6	55.48	4187.3	0.1457	
7	77.00	5811.7	0.9564	
8	204.21	15413.1	0.0807	

Chloroform-d

77.00

¹H NMR of 4-bromononan-5-one, **2c**

Acquisition Time (sec) 1.3518

10 1.38 414.6 0.0759 20 1.84 552.2 0.0176 30 2.64 791.6 0.1980

¹³C NMR of 4-bromononan-5-one, **2c**

Acquisition Time (sec) 0.9006

7

9

38.64

77.00

8 53.53

2916.1

4040.6

5811.7

10 204.37 15424.8 0.1687

0.6180

0.6095

1.0000

¹H NMR of 5-bromoundecan-6-one, **2d**

Acquisition Time (sec) 1.3518

10 1.46 438.6 0.0554 20 2.57 772.4 0.0652

¹³C NMR of 5-bromoundecan-6-one, **2d**

Acquisition Time (sec) 0.9006

Freq	uency (M	Hz)	75.48		Nicleux	5		13C		Number of Transients	23	D	Orig	inal Points	Count	16316		
Point	ts Count	039	16384		Pulse S	equence		zqpq30		Solvent	CH	LOROFORM-D	Swe	ep Width (f	z)	18115.94		
Temp	oerature (degree (27.900															
	Bu			u finik kung palakangan tan kangka					nja ku je ka je	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	- Justie Just	Chloroform-d		62°59-	-38.91			
Innti	200	192	184 17	6 168 1	60 15	2 144	136	6 128	120 112 Chemic:	: 104 96 88 al Shift (ppm.)	8	80 72 64	56	6 48	40	32	24	16 8
No. 1 2 3 4 5 6	(ppm) 13.80 13.87 22.10 22.40 23.64 29.47	(Hz) 1041.3 1046.9 1668.3 1690.4 1784.4 2224.5	Height 0.1695 0.2853 0.1946 0.3270 0.4289 0.2719	No. (ppm) 7 31.23 8 33.18 9 38.91 10 53.79 11 77.00 12 204.40	(Hz) 2357.2 2504.3 2936.6 4060.1 5811.7 15427.5	Height 0.1618 0.3945 0.3766 0.3547 1.0000 0.0839	No.	Annotation Chloroform-c	(ppm) 1 77.00									

¹H NMR of 8-bromoheptadecan-9-one, **2e**

Acquisition Time (sec) 1.3518

10 1.93 579.5 0.0510

¹³C NMR of 8-bromoheptadecan-9-one, 2e

Acquisition Time (sec) 0.9006

		¹ H NMR	of 2-bromo-2.	4-dimethy	lpentan-3-one.	2h
--	--	--------------------	---------------	-----------	----------------	----

Acquisition Time (sec) 1.3518

Frequency (NHz) 300	0.13	Nucleus	1H	Number of Transients	1	Original Points Count	8124
Points Count 819	92	Puise Seguence	Zq	Solvent	CHLOROFORM-D	Sweep Width (Hz)	6009.62
Temperature (degree C) 27.	.600						

¹³C NMR of 2-bromo-2,4-dimethylpentan-3-one, **2h**

Acquisition Time (sec) 0.9006

20.03	1010.0	0.4342		1 Cru
29.30	2211.2	0.5723		92
34.54	2607.1	0.1576		
64.56	4872.9	0.0755		
77.00	5811.7	0.9926		
209.93	15844.4	0.0656		

¹H NMR of mixture 3-bromononan-4-one (2f) и 5-bromononan-4-one (2f') 1:1

Acquisition Time (sec) 1.3518

¹³C NMR of mixture 3-bromononan-4-one (2f) и 5-bromononan-4-one (2f') 1:1

Acquisition Time (sec) 0.9006

10 29.46 2223.4 0.4005

¹H NMR of mixture 2-bromo-2-methyloctan-3-one (2g) и 4-bromo-2-methyloctan-3-one (2g') 2:1

Acquisition Time (sec) 1.3518

Freq	uency (I	VHz)	300.13	3		Nux	cieus		ाH	l i		1	umber of Trans	ie <i>nts</i> 1			Original Points Cou	unt	8124	
Point	ts Count	t	65536	;		Pul	se Segue.	nce	zq	19			io ivent	CH	LOROFORM	I-D	Sweep Width (Hz)		6009.62	
Tem	oer <i>a</i> ture	(degree	C) 26.60	0		- 31 31														
2		∽ ^{Bu}		1		Bu Br												-184		
Chic	proform-o	d									A.39	4.36			73.07 17.3.04 17.3.02 1.3.02	-2.81 -2.78 -2.76			1 167 1 165 1 165 1 162 1 38 1 38 1 38 1 38	115 111 111 0.89 0.89
											0	.51			0.55	2.02		6.0	0 2.90 6.01	1.45 4.46
											<mark>l</mark>	H.			·····	. <mark></mark>				
		7.0	6.	5	6	.0	5.5		5.0)	4.5 CI	hemic	4.0 al Shift (ppm)	3.5	3.0		2.5 2.	.0	1.5	1.0
No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No.	(ppm)	(Hz)	Height	No	. Annotation	(ppm)						
1	0.86	259.6	0.1040	11	1.34	402.8	0.0566	21	2.78	835.D	0.1400	1	Chloro form-d	7.25						
2	0.89	266.4	0.2110	12	1.36	408.5	0.0360	22	2.81	842.3	0.0783									
3	0.91	273.2	0.1073	13	1.56	469.7	0.0209	23	2.97	892.5	0.0080									
4	1.11	332.8	0.1053	14	1.60	480.0	0.0533	24	300	899.3	0.0158									
5	1.15	339.7	0.1047	15	1.62	407.1	0.0735	25	3.02	906.2	0.0191									
7	1.15	350.7	0.1057	17	1.65	494.2 501.3	0.0490	20	3.04	919.9	0.0149									
8	1.26	379.6	0.0525	18	1.70	510.2	0.0056	28	434	1302.2	0.0162									
9	1.29	386.5	0.1081	19	1.84	552.9	1.0000	29	4.36	1309.7	0.0262									
10	1.31	393.8	0.1528	20	2.76	827.6	0.0847	30	4.39	1316.6	0.0160									

¹³C NMR of mixture 2-bromo-2-methyloctan-3-one (2g) и 4-bromo-2-methyloctan-3-one (2g') 2:1

Acquisition Time (sec) 0.9006

¹H NMR of 1-bromo-3,3-dimethylbutan-2-one, **5a**

Acquisition Time (sec) 1.3518

Frequency (NHz) 300.13	Nucleus	ाम	Number of Transients	1	Original Points Count	8124
Points Count 8192	Pulse Sequence	Zq	Solvent	CHLOROFORM-D	Sweep Width (Hz)	6009.62
Temperature (degree C) 26,600						

¹³C NMR of 1-bromo-3,3-dimethylbutan-2-one, **5a**

Acquisition Time (sec) 0.9006

Frequency (MHz)	75.48	Nucleus	13C	Number of Transients	111	Original Points Count	16316
Points Count	16384	Puise Sequence	zqpq30	Solvent	CHLOROFORM-D	Sweep Width (Hz)	18115.94
Temperature (degree C)	27.500						

5811.7 0.5177 4 77.00 206.03 15550.2 0.0606 5

3

44.21

¹H NMR of 2-bromo-1-phenylethanone, **5b**

Acquisition Time (sec) 1.3518

¹³C NMR of 2-bromo-1-phenylethanone, **5b**

Acquisition Time (sec) 0.9006

Frequenc	y (MHz)	75.48	Nucleus	13C	Number of Transients	330	Original Points Count	16316
Points Co	ount	16384	Pulse Sequence	zqpq30	Solvent	CHLOROFORM-D	Sweep Width (Hz)	18115.94
Temperat	ture (degree	C) 24.700						
Br.		C) 24.700				Chloroform-d		
والمادية والمراج		ar de a sta des mais sus Albanematera p	فموار والمردوقة والمردوقة والمروق والمراجع والمردوق	and the state of the second		المراجع والمراجع والمرجع	in the contract of the last of a link of the last of t	in the other tests to be a star of the second
		an dia tanàna mandritra dia					aulantayaa balan fallanaa karaa	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ
192	184	176 168 160	152 144 13	36 128 120 1 Chemic	12 104 96 al Shift (ppm)	88 80 72	64 56	48 40 32
No. (pp	om) (Hz)	Height No. Annota	ation (ppm)					
1 30.	.88 2330.7	7 0.2519 1 Chlorof	orm-d 77.00					
2 77.	.00 5811.7	7 0.9618	2.6 E.C.					
3 128	3.83 9723.9	9 0.3605						
4 128	3.91 9729.4	4 0.8657						
5 133	3.93 10108.	7 0.2335						
	05 44404							

¹H NMR of 2-bromo-1-phenylhexan-1-one, **5**c

Acquisition Time (sec) 1.3518

¹³C NMR of 2-bromo-1-phenylhexan-1-one, **5**c

Acquisition Time (sec) 0.9006

10

134.52 10152.9 0.1687 11 193.27 14587.1 0.1492

¹H NMR of 2-bromo-1-(p-tolyl)ethan-1-one, **5d**

Acquisition Time (sec) 2.7150

¹³C NMR of 2-bromo-1-(p-tolyl)ethan-1-one, **5d**

Acquisition Time (sec) 0.9050

¹H NMR of 2-bromo-1-(2-chlorophenyl)ethan-1-one, **5**e

Acquisition Time (sec) 2.7150

10 7.57 2271.7 0.0870

¹³C NMR of 2-bromo-1-(2-chlorophenyl)ethan-1-one, 5e

Acquisition Time (sec) 0.9050

6

7

8

9

131.30

132.73

136.24

9909.7 0.0997

10017.6 0.5367 10282.8 0.1471

194.01 14642.8 0.2043

¹H NMR of 2,4-dibromopentan-3-one, **3a** (mixture of *meso-* and *rac-*isomers)

Acquisition Time (sec) 1.3518

6

4.74 1423.9 0.1109 12 5.00

1501.7 0.0823

Frequency (NHz) 300.13	Nucleus 1H	Number of Transients 1	Original Points Count 8124
Points Count 8192	Puise Sequence zo	Solvent CHLOROFORM-D	Sweep Width (Hz) 6009.62
Temperature (degree C) 24,700			

S40

¹³C NMR of 2,4-dibromopentan-3-one, **3a** (mixture of *meso-* and *rac-*isomers)

Acquisition Time (sec) 0.9006

Frequency (MHz)	75.48	Nucleus	13C	Number of Transients	237	Original Points Count	16316
Points Count	16384	Pulse Sequence	zqpq30	Solvent	CHLOROFORM-D	Sweep Width (Hz)	18115.94
Frequency (IVHz) Points Count Temperature (deque Br Br	75.48 16384 e C) 25.200	Nucleus Pulse Seguence	 	Number of Transients Solvent	237 CHLOROFORM-D Chloroform-d	Original Points Count Sweep Width (Hz)	16316 18115.94 9;61- 10;62- 10
		152 144 11					
No. (ppm) (Hz 1 19.50 1471 2 21.74 1640 3 43.82 3307 4 44.01 3321 5 77.00 5811 6 195.99 1479 7 197.99 1494	Height No. Annota .5 0.6282 1 Chlorofo .7 0.3115 1 Chlorofo .4 0.1628	tion (ppm) rm-d 77.00	56 126 120 11 Chemic	∠ 104 96 d	30 00 72	04 30 40	40 32 24 16

¹H NMR of 3,5-dibromoheptan-4-one, **3b**

Acquisition Time (sec) 1.3518

9 2.12 636.0 0.1158

¹³C NMR of 3,5-dibromoheptan-4-one, **3b**

Acquisition Time (sec) 0.9006

Frequen	ку (MHz)	75.48	Nucleus	13C	Number of Transients	391	Original Points Count	16316
Points (Count	16384	Pulse Sequence	zqpq30	Solvent	CHLOROFORM-D	Sweep Width (Hz)	18115.94
Tempera	ature (degree	C) 30.700						
Et-	O Er Br					Chloroform-d		
								<u>86.06</u>
								-11.88
-194.34	da a ta san ang	hantilaun, maatanafilisisista satu misyaa	و المحمد المحمد المحمد المحمد من المحمد ا	(اور چیم را شین در شان دون با در آن اور اور اور آن در آن	, al a stability of the state of the	al, any time of a long time at a state of the life of the state of the	teriti metut tetik kenen dan vinanin dan telah meter	an 1 - Ly () H affe an a finistic b. a big fill a star 1 a.
					aran Surah ang tang tang tang tang tang tang tang		, an	
192	2 184	176 168 160	152 144 136	128 120 112 1 Chemic	04 96 88 al Shift (ppm.)	80 72 64	56 48 40	32 24 16 8
No. (p 1 11 2 26 3 51 4 77 5 19	bpm) (Hz) 1.88 896.5 5.06 1966.9 1.70 3902.0 7.00 5811.7 14.34 14667.8	Height No. A 0.4164 1 Ch 0.5491 0.7500 0.9776 0.1700 0.1700 0.1700	Innotation (ppm) Ioroform-d 77.00	Chemic	ar Srint (bhui)			

¹H NMR of 4,6-dibromononane-5-one, **3c**

Acquisition Time (sec) 1.3518

12 1.93 580.2 0.0978 24 7.25 2176.0 0.0516

¹³C NMR of 4,6-dibromononane-5-one, **3c**

Acquisition Time (sec) 0.9006

5 77.00 5811.7 1.0000 6 194.38 14671.1 0.1827

¹H NMR of 5,7-dibromoundecan-6-one, **3d**

Acquisition Time (sec) 1.3518

¹³C NMR of 5,7-dibromoundecan-6-one, **3d**

Acquisition Time (sec) 0.9006

7 194.38 14671.1 0.1076

¹H NMR of 8,10-dibromoheptadecan-9-one, **3e**

Acquisition Time (sec) 1.3518

¹³C NMR of 8,10-dibromoheptadecan-9-one, **3e**

Acquisition Time (sec) 0.9006

9 194.40 14672.2 0.1154

¹H NMR of 3,5-dibromononan-4-one, **3f**

Acquisition Time (sec) 1.3518

12 2.04 611.0 0.1127

¹³C NMR of 3,5-dibromononan-4-one, **3f**

Acquisition Time (sec) 0.9006

10 194.35 14668.9 0.1387

¹H NMR of 2,4-dibromo-2-methyloctan-3-one, **3g**

Acquisition Time (sec) 1.3518

¹³C NMR of 2,4-dibromo-2-methyloctan-3-one, **3g**

Acquisition Time (sec) 0.9006

Freq	uency (N	/Hz)	75.48			Nick	us		13C	-	Number of T	rans ients	112		Origina.	l Points	Count	16316	š		
Point	ts Count	- 033	16384			Pulse	Sequence	æ	zqpq30		Solvent		CHLOROFO	RM-D	Sweep	Nidth (H	z)	18115.	94		
Tem	perature	(degree (26.900																		
-138.04		Br Br									\$\$1 \$4 \$4 \$ \$4 \$ \$ 		Chloroform-o	-64.02		-45.65		-34.32	-23.19	-13.78	
200	192	184	176	168	160	152	144	136	128	120	112 104 96 Chemical Shift (ppm)	88	80 72	2 64	56	48	40	32	24	16	8
No	(nnm)	(H7)	Height	No	Annota	tion 1	(nnm)														
1	13.78	1040.2	0.4335	1	Chlorofo	rm_d 7	77.00														
2	22.07	1666.1	0.3843			ini-a [i	1.00														
3	22.01	2203.5	0.6396																		
4	20.10	2203.3	0.0330																		
4	29.39	2217.9	0.7771																		
5	31.00	2339.5	1.0000																		
6	34.32	2590.5	0.8641																		
7	45.65	3445.3	0.8754																		
8	64.02	4831.9	0.2937																		
9	77.00	5811.7	0.8980																		
10	198.04	14947.6	0.2161																		

¹H NMR of 1,1-dibromo-3,3-dimethylbutan-2-one, **6a**

Acquisition Time (sec) 1.3518

Frequency (NHz) 300.13	Nucleus	ा म	Number of Transients	1	Original Points Count	8124
Points Count 8192	Puise Sequence	ZQ	Solvent	CHLOROFORM-D	Sweep Width (Hz)	6009.62
Temperature (degree C) 27,400						

¹³C NMR of 1,1-dibromo-3,3-dimethylbutan-2-one, **6a**

Acquisition Time (sec) 0.9006

Frequency (MHz)	75.48	Nucleus	13C	Number of Transients	117	Original Points Count	16316
Points Count	16384	Pulse Sequence	zqpq30	Solvent	CHLOROFORM-D	Sweep Width (Hz)	18115.94
Br	(2) 27.400						-26.79
					Chloroform-d		
8					00.77		
	ler terret gest for let sport for let for the state of th	hand an	analiyada yarahiya dalah kida mayo na jila daga	h fi ya ka	ŧ nadu (11) fatigation (11) fatigation (11) (11) (11) (11) (11) (11) (11) (11	ĸŧŧŧĸĸŧĸŗŧĸŧŧŧŧŧŧŧĸŧĸŧĸŧĸŧĸŧĸŧĸ	
200 192	Height No. Annota	160 152 144	136 128 120 Chemica	112 104 96 al Shift (ppm)	88 80 72	64 56 4	8 40 32 24

No.	(ppm)	(Hz)	Height	No.	Annotation	Γ
1	26.79	2022.2	1.0000	1	Chloroform-d	Γ
2	37.34	2818.3	0.5524) 	2 · · · · · · · · · · · · · · · · · · ·	1
3	43.98	3319.2	0.3209			
4	77.00	5811.7	0.6810			
5	201.52	15209.7	0.1223			

¹H NMR of 2,2-dibromo-1-phenylethanone, **6b**

Acquisition Time (sec) 1.3518

¹³C NMR of 2,2-dibromo-1-phenylethanone, **6b**

Acquisition Time (sec) 0.9006

¹H NMR of 2,2-dibromo-1-(p-tolyl)ethan-1-one, **6d**

Acquisition Time (sec) 2.7150

Frequency (IVHz)	300.13	Nuckus	1H	Number of Transients	1	Original Points Count	16316
Points Count	16384	Pulse Sequence	ZQ	Solvent	CHLOROFORM-D	Sweep Width (Hz)	6009.62
Temperature (dec	Chloroform-d			30// 6/1		Sweep Vickin (F2)	
1.98	1.99	0.98					3.00
, <mark>,</mark> 8.0	7.5 7.0	6.5 6	.0 5.5 Chemica	 5.0 4. I Shift (αρπ.)	5 4.0	3.5 3.0	2.5
No. (ppm) (H 1 2.44 731 2 6.68 200 3 7.25 217 4 7.28 218 5 7.31 219	z) Height No. Annotation .1 1.0000 1 Chloroform 5.0 0.5349 5.0 0.3806 5.9 0.2286 4.3 0.2445	n (ppm) -d 7.25					

 6
 7.96
 2389.1
 0.3200

 7
 7.99
 2397.5
 0.2861

¹³C NMR of 2,2-dibromo-1-(p-tolyl)ethan-1-one, **6d**

Acquisition Time (sec) 0.9050

Frequency (MHz)	75.48	Nucleus	13C	Number of Transients 512
Original Points Count	16316	Points Count	16384	Pulse Sequence zapa30
Solvent	CHLOROFORM-D	Sweep Width (Hz)	18028.85	Temperature (degree C) 27.009
			18028.85	Temperature (keqree C) 27.009 Chloroform-d
a han frank ha tra tha tra children a barbara			and and the state of the state	
184 176 No. (ppm) (Hz) 1 21.81 1646.4 2 39.81 3004.4 3 77.00 5811.6 4 128.10 9668.7 5 129.64 9784.3 6 129.82 9798.6 7 145.70 10997.0 8 185.62 14010.1	Height No. Annotatio 0.1888 1 Chloroform 0.1410 1 Chloroform 1.0000 0.0566 0.2844 0.5257 0.0927 0.0597	144 136 128 n (ppm) ⊷d 77.00	120 112 104 Chemical SI	14 96 88 80 72 64 56 48 40 32 24 16 I Shift (ppm)

¹H NMR of 2,2-dibromo-1-(2-chlorophenyl)ethan-1-one, **6e**

Acquisition Time (sec) 2.7150

Frequency (MHz)	300.13		Nucleus		1H		Number of Transients	1	Original Points Count	16316
Points Coun	ıt	16384		Puise Sequence	æ	ZQ		Solvent	CHLOROFORM-D	Sweep Width (Hz)	6009.62
Temperature	e (degree C	27.005									
\bigcirc	CI Br	ir				-6.76					
			7.62 7.62 7.47 7.47 7.48	7.35 -7.125 -7.40 -7.35 -7.25 -7.40	1						
				MAL	·····		· · · ··· ·				·····
			1.00 Z			1.00 H					
8.5		8.0	7.5	5	7.0		6.5 Cher	6.0 nical Shift (ppm)	5.5	5.0 4	.5 4.0
No. (ppm)	(Hz) I	Height No.	(ppm) (H	Hz) Height	No.	Annotation	(ppm)				
1 6.76	2027.4 1	1.0000 9	7.43 223	31.0 0.0875	1 (Chloroform-d	7.25				
2 7.25	2176.0 0	0.4770 10	7.45 223	36.1 0.6107							
3 7.34	2203.8 0	0.0810 11	7.46 223	39.1 0.3184							
4 7.35	2206.8 0	0.0891 12	7.47 224	42.0 0.1696							
5 7.36	2209.7 0	0.1037 13	7.47 224	43.5 0.1524							
6 7.37	2212.3 0	0.1531 14	7.59 227	79.0 0.2639							
7 7.39	2217.4 0	0.1320 15	7.62 228	86.0 0.1855							
8 7.40	2220.0 0	0.1757 16	7.62 228	87.5 0.1832							

¹³C NMR of 2,2-dibromo-1-(2-chlorophenyl)ethan-1-one, **6e**

Acquisition Time (sec) 0.9050

Frequency	(MHz)	75.48	Nuckus	13C	Number of Transients	256	Original Points Count	16316
Points Co.	unt	16384	Puise Sequence	zqpq30	Solvent	CHLOROFORM-D	Sweep Width (Hz)	18028.85
Temperatu	ire (degree C	27.129						
Temperatu	CI Br	3 27.129		<mark>-130.45</mark>		Chlorofo 8, 12 -	rm-d	
and the state of the		****** ******************************			«\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\\##?\@\###############################	
 192	184	176 168 160) 152 144	136 128 120 Chemic		 96 88 80		48 40 32
No. (ppr 1 42.0 2 77.0 3 107	n) (Hz) 15 3173.8 10 5811.6	Height No. Annota 0.1968 1 Chlorofo 0.9912	tion (ppm) rm-d 77.00					
4 130	45 9845 9	0.2104						
5 130.4	40 0040.9 00 0880 0	0.4003						
6 130.3	95 9883 3	0.1510						
7 132	97 10036 3	0.1503						
8 134	07 10118.8	0.0731						
0 104.		0.0101						

9 188.76 14246.7 0.0432

¹H NMR of pentan-3-one, 7a

Acquisition Time (sec) 1.3518

Frequency (IVHz) 300.13	Mucleus 1H	Number of Transients 1	Original Points Count 8124
Points Count 8192	Pulse Sequence za	Solvent CHLOROFORM-D	Sweep Width (Hz) 6009.62
Temperature (degree C) 29.200			

7 2.38 715.2 0.1806

HRMS of 8-bromoheptadecan-9-one, 2e

S67

Display Report Analysis Info Acquisition Date 22.03.2018 15:24:46 Analysis Name D:\Data\Kolotyrkina\2018\Kapustina\0322026.d Method tune_low.m Operator BDAL@DE Sample Name /KAPN 68_90 Instrument / Ser# micrOTOF 10248 Comment C9H16Br2O mH 298.9640/ clb added, Acquisition Parameter Source Type ESI Ion Polarity Positive Set Nebulizer 0.4 Bar 180 °C Focus Not active Set Dry Heater Scan Begin Scan End Set Capillary Set End Plate Offset 50 m/z 4500 V Set Dry Gas 4.0 l/min Set Divert Valve 3000 m/z -500 V Waste Intens. +MS, 0.2-0.9min #(9-56) x106 1.0 0.8 322.9435 0.6 0.4 320.9452 324.9415 0.2 323.9468 321.9486 320.1301 325.9446 N 0.0 C9H16Br2O, M+nNa ,320.95 322.9440 2000 1500 320.9460 324.9419 1000 500 323.9473 321.9494 325.9453 0 318 320 328 322 326 324 m/z Bruker Compass DataAnalysis 4.0 printed: 22.03.2018 15:27:57 Page 1 of 1

S68