Synthesis of Nanostructured Powders and Thin Films of Iron Sulfide from Molecular Precursors

Laila Almanqur,^a Inigo Vitorica-yrezabal ,George Whitehead^a David J. Lewis^{b*} and Paul O'Brien^{ab*}

^aSchool of Chemistry

^bSchool of Materials

The University of Manchester

Oxford Road, Manchester, UK M13 9PL

Electronic Supporting Information

Compound	(3)	(4)
Empirical formula	C ₁₂ H ₂₁ FeO ₃ S ₆	$C_{12}H_{21}FeO_3S_6$
Formula weight	461.50	461.50
Temperature/K	150.00(10)	150.00(2)
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/c$
a/Å	9.8787(2)	13.9928(3)
b/Å	9.6899(2)	15.6007(3)
c/Å	21.8298(5)	9.13185(19)
α/°	90	90
β/°	101.469(2)	102.292(2)
γ/°	90	90
Volume/Å ³	2047.90(8)	1947.76(7)
Z	4	4
ρ _{calc} g/cm ³	1.497	1.574
μ/mm ⁻¹	1.354	1.423
F(000)	956.0	956.0
Crystal size/mm ³	0.4 imes 0.35 imes 0.2	$0.522\times0.204\times0.094$
Radiation	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)
20 range for data	4.26 to 59.988	3.962 to 52.736
collection/°		
Index ranges	$-13 \le h \le 13, -13 \le k \le 12, -$	$-17 \le h \le 17, -19 \le k \le 19, -11 \le$
	$29 \le l \le 27$	$l \leq 10$
Reflections collected	36718	27884
Independent reflections	5332 [$R_{int} = 0.0282, R_{sigma} =$	$3978 [R_{int} = 0.0217, R_{sigma} =$
	0.0191]	0.0130]
Data/restraints/parameters	5332/0/205	3978/0/202
Goodness-of-fit on F ²	1.029	1.035
Final R indexes [I>=2σ (I)]	$R_1 = 0.0231, wR_2 = 0.0517$	$R_1 = 0.0177, wR_2 = 0.0439$
Final R indexes [all data]	$R_1 = 0.0288, wR_2 = 0.0537$	$R_1 = 0.0194, WR_2 = 0.0446$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.40	0.35/-0.22

Table S1. Crystallographic data for of $[Fe(S_2CO^iPr)_3]$ (3) and $[Fe(S_2CO^nPr)_3]$ (4)

Bond length and angle	Data
Fe1- S7	2.2958(4)
Fe1- S14	2.3074(4)
Fe1- S21	2.2846(4)
Fe1- S2	2.3177(4)
Fe1- S16	2.2972(4)
Fe1- S9	2.2981(4)
S7- C3	1.6907(13)
S14- C10	1.6846(13)
S21- C17	1.6922(14)
S2-C3	1.6937(13)
S16- C17	1.6954(14)
S9- C10	1.6954(14)
S7- Fe1- S14	95.195(14)
S14- Fe1- S2	96.812(14)
S16- Fe1- S9	92.051(14)

Table S3. Bond length and angles for complex (4)

Bond length and angle	Data
Fe1- S6	2.3013(3)
Fe1- S2	2.3155(4)
Fe1- S1	2.2948(4)
Fe1- S5	2.2931(4)
Fe1- S3	2.3161(4)
Fe1- S4	2.3050(4)
S6- C9	1.6908(13)
S2- C1	1.6934(12)
S1- C1	1.6851(13)
S5- C9	1.6971(13)
\$3- C5	1.6888(13)
S4- C5	1.6851(13)
S6- Fe1- S2	99.464(13)
S2- Fe1- S3	159.345(14)
S1- Fe1- S6	170.879(14)

	Complex	Iron sulfide	Mass loss%		Decomposition
		Phase	Calculated%	Found%	temperature °C
1	[Fe(S ₂ COMe) ₃]	FeS ₂	31.8%	30.2%	250-350 °C
		FeS	23.3%	24.5%	500-550 °C
2	[Fe(S ₂ COEt) ₃]	FeS ₂	28.6%	28.3%	290-350 °C
		FeS	20.9%	21.2%	500-550 °C
3	$[Fe(S_2CO^iPr)_3]$	FeS ₂	26%	26.9%	270-300 °C
		FeS	19.1%	20%	400-450 °C
4	$[Fe(S_2CO^nPr)_3]$	FeS ₂	26%	25.1%	200-250 °C
		FeS	19.1%	18.8%	500-550 °C

Table S4. Decomposition data of precursors[Fe(S_2COMe)₃] (1), [Fe(S_2COEt)₃] (2), [Fe(S_2CO^iPr)₃] (3) and [Fe(S_2CO^nPr)₃](4).

Figure S1. The XRD patterns of iron sulfide thin films prepared by spin coating method from [Fe (S_2COMe)₃] complex heated at 300°C for 60 min. The black sticks represent hexagonal troilite phase (FeS). (ICDD: 01-075-2165).

Figure S2. The XRD patterns of iron sulfide thin films prepared by spin coating method from [Fe ($S_2CO^{i}Pr$)₃] complex heated at 300 °C for 60 min. The black sticks represent hexagonal troilite phase (FeS). (ICDD: 01-075-2165).

FigureS4. SEM images of iron sulfide thin films from complex $[Fe(S_2COMe)_3]$ deposited by the spin coating method $\;$ at 300 $^\circ\rm C$

Figure S5. SEM images of iron sulfide thin films from complex $[Fe(S_2CO^ipr)_3]$ deposited by the spin coating method at 300 $^\circ\rm C$

Figure S6. SEM images of iron sulfide thin films from complex $[Fe(S_2CO^npr)_3]$ deposited by the spin coating method at 350 $^\circ\rm C$

Figure S7. The XRD patterns of iron sulfide nanoparticles prepared by melt method from [Fe (S_2COMe)₃] complex heated at 300 °C for 60 min. The black sticks represent hexagonal pyrrhotite phase (Fe_{1-x}S). The red sticks represent pyrite FeS₂ phase (denoted by symbol (*)).

Figure S8. The XRD patterns of iron sulfide thin films prepared by melt method from [Fe (S₂COEt)₃] complex heated at 350 °C for 60 min. The black sticks represent hexagonal pyrrhotite phase (Fe_{1-x}S). The red sticks represent pyrite FeS₂ phase (denoted by symbol (*).

Figure S9. The XRD patterns of iron sulfide nanoparticles prepared by melt method from [Fe (S_2CO^iPr)₃] complex heated at 300 °C for 60 min. The black sticks represent hexagonal pyrrhotite phase (Fe_{1-x}S).

Figure S10. The XRD patterns of iron sulfide nanoparticles prepared by melt method from [Fe (S_2CO^nPr)₃] complex heated at 350 °C for 60 min. The black sticks represent hexagonal pyrrhotite phase (Fe_{1-x}S).

Figure S11. Raman spectra of hexagonal pyrrhotite phase (Fe_{1-x}S). from complexes [Fe(S₂COMe)₃] (a) at 300 °C , [Fe(S₂COEt)₃] (b) at at 350 °C , [Fe(S₂COⁱPr)₃] (c) at 300 °C and[Fe(S₂COⁿPr)₃](d) at 350 °C.

Figure S12. SEM images of iron sulfide nanoparticles from complex [Fe(S₂COMe)₃] by melt method at 300 °C

Figure S13. SEM images of iron sulfide nanoparticals from complex [Fe(S₂COEt)₃] by melt method at 350 °C

Figure S14. SEM images of iron sulfide nanoparticles from complex $[Fe(S_2CO^iPr)_3]$ by melt method at 350 °C

Figure S15. SEM images of iron sulfide nanoparticles from complex $[Fe(S_2CO^nPr)_3]$ using melt method at 300 °C

Complex	Fe (%)	S (%)	Ratio (Fe:S)
[Fe(S ₂ COMe) ₃] (1)	49.7	50.0	FeS
$[Fe(S_2COEt)_3] (2)$	49.3	50.6	FeS
$[Fe(S_2CO^iPr)_3] (3)$	49.9	50.0	FeS
$[Fe(S_2CO^nPr)_3] (4)$	49.4	50.1	FeS

 Table S5. Elemental composition of Fe and S in iron sulfide thin films heated at 500 °C found by EDX.

The average crystallite size of iron sulfide from precursor (1) to (4) at two different temperatures 400 and 500 $^{\circ}$ C were calculated using the Schererr equation:

 $L = K\lambda / B \cos(\theta)$

Where L, K, λ , B and θ are crystallite size, 0.94, the X-ray wavelength, the full width at half maximum of the peak and Bragg diffraction angle respectively.¹

Table S6. The average crystallite size of nanocrystals from complex (1), (2), (3) and (4) at growth temperature of 400 $^{\circ}$ C and 500 $^{\circ}$ C

Precursor	Average crystallite size at 400 °C	Average crystallite size at 500 °C
[Fe(S ₂ COMe) ₃] (1)	22.3 nm	28.6 nm
$[Fe(S_2COEt)_3] (2)$	14. 2 nm	17.7 nm
$[Fe(S_2CO^iPr)_3] (3)$	7.6 nm	10.2 nm
$[Fe(S_2CO^nPr)_3] (4)$	11.2 nm	14 nm

Complex	Fe (%)	S (%)	Ratio (Fe:S)
$[Fe(S_2COMe)_3] (1)$	44.0	55.9	Fe _{0.78} S
$[Fe(S_2COEt)_3] (2)$	44.3	55.6	Fe _{0.79} S
[Fe(S ₂ CO ⁱ Pr) ₃] (3)	45.3	54.6	Fe _{0.82} S
$[Fe(S_2CO^nPr)_3] (4)$	44.0	55.7	Fe _{0.79} S
$[Fe(S_2CO^nPr)_3] (4)$	44.0	55.7	Fe _{0.79} S

Table S7. Elemental composition of Fe and S in iron sulfide samples heated at 500 $^{\circ}\mathrm{C}$ found by ICP-OES.

Table S8. Elemental composition of Fe and S in iron sulfide samples heated at 500 $^\circ\mathrm{C}$ found by EDX.

Complex	Fe (%)	S (%)	Ratio (Fe:S)
[Fe(S ₂ COMe) ₃] (1)	44.0	55.8	Fe _{0.78} S
$[Fe(S_2COEt)_3] (2)$	44.2	55.6	Fe _{0.79} S
$[Fe(S_2CO^iPr)_3] (3)$	45.1	54.3	Fe _{0.83} S
$[Fe(S_2CO^nPr)_3] (4)$	44.2	55.9	Fe _{0.79} S

Figure S16. ¹H NMR spectra of iron (III) methylxanthate, [Fe(S₂COMe)]₃(1)

Figure S17. ¹H NMR spectra of iron (III) isopropylxanthate [Fe(S₂COⁱPr)₃](3)

Figure S18. ¹H NMR spectra of iron (III) n-propylxanthate [Fe(S₂COⁿPr)]₃(4)

References

1. L. Pallon, R. Olsson, D. Liu, A. Pourrahimi, M. Hedenqvist, A. Hoang, S. Gubanski and U. Gedde, *J. Mater. Chem. A*, 2015, **3**, 7523-7534.