1. The construction of standard curve for the detection of enzyme activity.

Experiment: 0.15 mol L⁻¹ Tris buffer (pH 8.0) was used to prepare 1.8×10^{-4} mol L⁻¹ DTNB solution. Then 0.025, 0.050, 0.075, 0.100 and 0.125 mmol L⁻¹ L-cysteine hydrochloride was respectively dissolved in the DTNB solution. After that, the AChE-functionalized 2D-PC was respectively placed into a series of L-cysteine hydrochloride solutions and UV absorbance at 412 nm was monitored.

Table S1 Data of Standard Curve				
Concentration of L-				
cysteine	Absorbance	Absorbance	Absorbance	Absorbance
hydrochloride	1	2	3	average
(mmol.L ⁻¹)				
0.025	0.32253	0.3224	0.3225	0.322477
0.050	0.65044	0.65027	0.65001	0.65024
0.075	0.972	0.97182	0.97154	0.971787
0.100	1.26311	1.26312	1.26234	1.262857
0. 125	1.59422	1.59169	1.59354	1.59315
0.150	1.89241	1.89133	1.89098	1.891573
0. 175	2.21499	2.21065	2.21872	2.214787

Figure S1 Standard Curve of L-cysteine hydrochloride

2. Measurement of binding amounts of AChE

2.1. Standard curve

Experiment: 2 mL obtained G-250 solution was mixed with 50 μ L AChE solution varied from 0.5 to 3.0 mg/mL (adjusted with 0.15 mol L-1 Tris-HCl buffer, pH=7.4) and UV absorbance at 595 nm was measured.

Figure S2 Standard Curve of AChE solution

2.2. Detection of AChE-functionalized 2D-PC

The amount of AChE on film (mg cm⁻²) meets following equation: $m = 4(A_0 - A_1)/(0.25 \times 12K)$ (S1)

where A_0 and A_1 are AChE solution before and after modification respectively, K is the slope of standard curve, 4 is the volume of AChE solution, 0.25 is the area of every film, 12 represents the amount of films.

The change of absorbance $({}^{A_0} - A_1)$ and the amounts of AChE on film were depicted in table S2.

	sample 1	sample 2	sample 3	sample average
Change of absorbance	0.1046	0.1517	0.1131	0.1231
The amounts of AChE on film (mg cm ⁻²)	0.36	0.53	0.39	0.43

Table S2 data of AChE-functionalized 2D-PC

3. water-solubility of organophosphates

organophosphates	dipterex	dichlorvos	malathion	methidathion	acephate	glufosinate- ammonium
water-solubility	soluble	soluble	4.39×10^{-4} mol/L (slightly soluble)	7.94 × 10 ⁻⁴ mol/L (slightly soluble)	soluble	soluble

Table S3 Water-solubility of some organophosphates ^a.

^a Data sources: https://www.baidu.com/

4. Calculations of limit of detection (LOD)

We surmised that there was a linear correlation between particle spacing of our sensor and dipterex concentration at the range of $0\sim10^{-14}$ mol L⁻¹ before calculations. We measured the responsivity of our AChE-PC sensor to a 50 mL of dipterex at a concentration of 10^{-14} mol L⁻¹ and a 38 nm decrease in particle spacing was observed. The resulting responsivity was calculated as S=38 × 10^{14} nm/(mol L⁻¹). At the blank solution, the average standard deviation is σ =8.9 nm. As a consequence, the LOD= $3.3 \times \sigma/S=7.7 \times 10^{-15}$ mol L⁻¹.

5. Performance comparison of different materials

ruble 5 r comparison of various analytical methods for sensing barm analogs					
Method Names	Analyte	Strengths/ Weakness	Sensitivity	References	
AChE- functionali zed 2D-PC	Diptere x	 S: detecting organophosphate with high sensitivity; miniaturized; simple detection device; simple preparation; W: can't detect dipterex in complex environment until now. 	LOD: 0.77 x 10 ⁻ ¹⁴ mol L ⁻¹	This study	
3D-PC biosensor	Sarin	S: detecting a real chemical warfare with high sensitivity;	LOD: 10 ⁻¹⁵ mol L ⁻¹	[1]	

Table S4 Comparison of various analytical methods for sensing Sarin analogs

		W: can't detect Sarin in				
		complex environment until				
		now				
		S: high sensitivity; using a				
SERS	1717	portable device;	LOD: ~13 fmol			
	VX;	W: relatively high cost;	(VX); ~670 fmol	[2]		
	tabun	require extensive sample	(tabun)			
		pre-treatment;				
		S: enormous electro-				
	DMMP	magnetic enhancement:				
SERS	; PMP;	W: relatively high cost	LOD: lower than	[3]		
2210	DEPA;	require extensive sample	1 ppm;			
	CEES	nre-treatment.				
	VX and	S: could distinguish the				
	its	nerve agent VX and its				
	hydroly	hydrolysis products.				
SERS	sis	W· relatively high cost.	50-100ug L ⁻¹	[4]		
	product	require extensive semple				
	product	require extensive sample				
	8	Se high appointivity large				
	DCP	S: nigh sensitivity; large				
		emission shift;				
CIEE/FS		W: time-consuming;	LOD: 1 / nmol L-	[5]		
		require extensive sample	1			
		pre-treatment; relying on				
		sophisticated instruments				
		S: sufficient separation of				
		these four compounds in				
	DMT:	environmental forensic	LOD: 0.015-			
HPLC-	DET:	analysis of samples with	0.025mg L ⁻¹			
MS/CE-	DPT; DIT	minimum sample pre-	(HPLC-MS);	[6]		
UV		treatment;	1.5-2mg L ⁻¹ (CE-			
		W: time-consuming;	UV)			
		require extensive sample				
		pre-treatment; relying on				

		sophisticated instruments		
		S: could detect real		
SPME/GC	TnBP;	samples; good alternative		
		extraction method;	LOD: 0.2 ng L^{-1}	
		W: time-consuming;	(TnBP); 1.5ng L ⁻	[7]
-1415	I LI II	require extensive sample	¹ (TEHP)	
		pre-treatment; relying on		
		sophisticated instruments		
		S: realized qualitative and		
	1/	quantitative determination		
	nesticid	of pesticide residues in		
SPME/GC	Pesticia	mangoes;	LOD: 1.0-3.3	[8]
-MS	residue	W: time-consuming;	μg kg ⁻¹	[0]
	s	require extensive sample		
		pre-treatment; relying on		
		sophisticated instruments		
		S: gas detection; short		
	Tabun, Sarin, Soman, VX	detection time (2.8s)		
IMS/DMS		W: time-consuming;	LOD: 20 μ σ m ⁻³	[9]
		require extensive sample	LOD. 20 Fg III	[2]
		pre-treatment; relying on		
		sophisticated instruments		
		S: could detect sample in a		
	DMMP	variety of sample matrixes		
IM(tof)M S		(water, kerosene, gasoline,		
		diesel);	LOD: lower than	[10]
		W: time-consuming;	1000 ppm;	
		require extensive sample		
		pre-treatment; relying on		
		sophisticated instruments		

Abbreviation: surface-enhanced Raman scattering (SERS); dimethyl methylphonate (DMMP); pinacolyl methylphosphonate (PMP); diethyl phosphoramidate (DEPA); chloroethyl ethylsulfide (CEES); cyclization-induced emission enhancement (CIEE); fluorescence spectrum (FS); diethyl chlorophosphate (DCP); high-performance liquid

chromatography-mass spectrometry (HPLC-MS); capillary electrophoresis with direct ultraviolet detection (CE-UV); N, N-(dialkyl)aminoethanesulfonicacids, where alkyl = methyl, ethyl, n-propyl or iso-propyl (DMT, DET, DPT, and DIT, re-spectively); solid-phase microextraction (SPME); gas chromatography-mass spectrometry (GC-MS); tri-n-butyl phosphate (TnBP); tris (2-ethylhexyl) phosphate (TEHP); ion mobility spectrometry (IMS); differential mobility spectrometry (DMS); ion mobility orthogonal reflector time-of-flight mass spectrometer (IM-(tof)MS);

References:

[1] C. X. Yan, F. L. Qi, S. G. Li, J. Y. Xu, C. Liu, Z. H. Meng, L. L. Qiu, M. Xue, W. Lu and Z. Q. Yan, Talanta, 2016, 159, 412-417.

[2] A. Hakonen, T. Rindzevicius, M.S. Schmidt, P.O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, M. Kall, Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion, Nanoscale 8 (2016) 1305-1308.

[3] F. Yan, T. Vo-Dinh, Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor, Sensor. Actuat. B-Chem. 121 (2007) 61-66.

[4] S. Farquharson, A. Gift, P. Maksymiuk, F. Inscore, Surface-enhanced Raman spectra of VX and its hydrolysis products, Appl. Spectrosc. 59 (2005) 654-660.

[5] A.K. Mahapatra, K. Maiti, S.K. Manna, R. Maji, S. Mondal, C. Das Mukhopadhyay, P. Sahoo, D. Mandal, A cyclization-induced emission enhancement (CIEE)-based ratiometric fluorogenic and chromogenic probe for the facile detection of a nerve agent simulant DCP, Chem. Commun. 51 (2015) 9729-9732.

[6] I. Rodin, A. Stavrianidi, R. Smirnov, A. Braun, O. Shpigun, I. Rybalchenko, New Techniques for Nerve Agent Oxidation Products Determination in Environmental Water by High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) and Capillary Electrophoresis (CE) with Direct Ultraviolet (UV) Detection, Environ. Forensics 14 (2013) 87-96.

[7] Y.C. Tsao, Y.C. Wang, S.F. Wu, W.H. Ding, Microwave-assisted headspace solidphase microextraction for the rapid determination of organophosphate esters in aqueous samples by gas chromatography-mass spectrometry, Talanta 84 (2011) 406-410.

[8] A. Menezes Filho, F.N. dos Santos, P.A. de Paula Pereira, Development, validation and application of a methodology based on solid-phase micro extraction

followed by gas chromatography coupled to mass spectrometry (SPME/GC-MS) for the determination of pesticide residues in mangoes, Talanta 81 (2010) 346-354.

[9] M. Maziejuk, M. Ceremuga, M. Szyposzynska, T. Sikora, A. Zalewska, Identification of organophosphate nerve agents by the DMS detector, Sensor. Actuat. B-Chem. 213 (2015) 368-374.

[10] W.E. Steiner, S.J. Klopsch, W.A. English, B.H. Clowers, H.H. Hill, Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility timeof-flight mass spectrometry, Anal. Chem. 77 (2005) 4792-4799.

6. Calculated wavelength of 2D-PC

6.1 The 2D Bragg diffraction equation.

The diffraction process of 2D-PC was illustrated in figure S3, while white source (S1, S2) illuminated below the sample at an incidence angle of 45° (θ), and the structural color was recorded above the sample along the normal.

Figure S3 Illustration of the diffraction process of 2D-PC

The path difference Δ was given by

$$\Delta = n_{air}(AB) = n_{air}(p\sin\theta) = p\sin\theta = \frac{\sqrt{3}}{2}d\sin\theta$$
(S2)

Where n_{air} is the refractive index of air ($n_{air}=1$), p is the distance between adjacent lattice rows. θ is the incidence angle. According to reference¹, p is relate to the lattice spacing (d) by

$$p = \frac{\sqrt{3}}{2}d \ (S3)$$

According to Bragg's law, while the path difference (Δ) is equal to a whole number of wavelengths, the diffraction will be strengthened. So the path difference meets following equation:

$$\frac{\sqrt{3}}{2}d\sin\theta = m\lambda \,(S4)$$

Where m is the diffraction order, λ is the diffracted wavelength. While the incidence angle was fixed, and we surmise the diffraction was the first-order diffraction. According to the determination of particle spacing, we can also calculate the diffracted wavelength of 2D-PC in different condition.

Figure S4 AChE-functionalized 2D-PC (\blacklozenge) and unfunctionalized 2D-PC (\blacktriangle) for dipterex detection.