Supporting Information for:

Synthesis of an Oxygen-bridged P/B Frustrated Lewis Pair and Its

Reactivity Against Small Molecules

Yiheng Wang, Zhen Hua Li, Huadong Wang*

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200433, China. E-mail: <u>huadongwang@fudan.edu.cn</u>

General Experimental methods

Solvents were dried by reflux under N₂ over sodium or CaH₂ and freshly distilled prior to use. Air-sensitive compounds were handled under a N₂ atmosphere using standard Schlenk and glovebox techniques. NMR spectra were recorded on Bruker SPECT NMR (400 MHz for ¹H, 376 MHz for ¹⁹F, 100 MHz for ¹³C) and Bruker DMX500 NMR (500 MHz for ¹H, 160 MHz for ¹¹B) spectrometers. Most assignments were based on a series of 2D NMR experiments. HRMS analyses were performed at Bruker micrOTOF II. Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Center: CCDC 1843771-1843777 (compound **2-8**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data request/cif. Mes₂P(O)H (Mes = 2,4,6-trimethylphenyl),¹ ClB(C₆F₅)₂² and HB(C₆F₅)₂² were prepared as reported.

NMR spectra

Figure S2. ¹³C NMR spectrum of $\mathbf{1}$ in C₆D₆

Figure S4. ^{31}P NMR spectrum of $\boldsymbol{1}$ in C_6D_6

Figure S6. ¹H NMR spectrum of **2** in C_6D_6

-42.42

Figure S12. $^{\rm 13}{\rm C}$ NMR spectrum of ${\bf 3}$ in ${\rm C_6D_6}$

Figure S16. ¹H NMR spectrum of **4** in C_6D_6

-8.72

Figure S18. $^{19}\mathrm{F}$ NMR spectrum of $\boldsymbol{4}$ in $\mathrm{C_6D_6}$

Figure S22. ¹³C NMR spectrum of **5** in C_6D_6

Figure S24. ³¹P NMR spectrum of **5** in C_6D_6

Figure S26. ¹H NMR spectrum of **6** in C_6D_6

Figure S28. ¹⁹F NMR spectrum of **6** in C_6D_6

Figure S32. ¹³C NMR spectrum of $\mathbf{7}$ in C_6D_6

125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -: f1 (ppm)

Figure S34. ³¹P NMR spectrum of **7** in C_6D_6

Figure S36. ¹H NMR spectrum of $\mathbf{8}$ in C₆D₅Br

Figure S38. ¹⁹F NMR spectrum of **8** in C_6D_5Br

Figure S40. ^{11}B NMR spectrum of $\boldsymbol{8}$ in $\text{C}_6\text{D}_5\text{Br}$

79.88 79.66

XRD structure

Figure S41. Molecular structure of **3** (thermal ellipsoids are shown with 30% probability).

Figure S42. Molecular structure of **7** (thermal ellipsoids are shown with 30% probability).

Computation details

Quantum chemical calculations were all performed at the density functional theory (DFT) level using the hybrid meta-GGA M06-2x functional,³ which has been proven to give reliable results to the structural and energetic properties of non-covalent systems and reaction energy barriers.⁴ The M06-2x functional has a mean absolute error in energy barriers of about 1.3 kcal/mol. The 6-31+G(d,p) basis set⁵ was used for the atoms directly involved in the reaction, the 6-31G basis set was used for the F atoms, and the 6-31G(d) basis set was used for the other atoms. All the DFT calculations were performed with a pruned (99,590) integration grid.

Full geometry optimization were carried out in the benzene solution which was modelled by the polarizable continuum solvation model (IEFPCM)⁶ with radii and non-electrostatic terms for Truhlar and coworkers' SMD solvation model.⁷ This solvation model is by far the most reliable one in predicting solvation free energies. The convergence criteria used for the geometry optimization are 4.50×10^{-4} au. for gradients, and 1.80×10^{-3} au. for displacements. Harmonic vibrational analyses were carried out to confirm if the optimized structure is a genuine minima. All the calculations were performed by using the Gaussian 09 program.⁸

Cartesian coordinates of compound 1

0,1

F,0,-0.454621,-1.985341,-2.242012 F,0,1.555348,-1.325838,1.988442 F,0,3.037125,-1.161777,-2.064138 F,0,2.258144,1.821025,1.520298 F,0,-1.318348,-4.393731,-1.447392 F,0,0.722112,-3.772376,2.756344 F,0,5.692032,-0.711199,-1.850678 F,0,4.89392,2.266564,1.715336 F,0,-0.737345,-5.314708,1.041519 F,0,6.628805,1.010382,0.042734 C,0,-0.122538,-2.39692,-1.002245 C,0,0.879767,-2.083606,1.097904 C,0,3.473509,-0.302972,-1.120665 C,0,3.068758,1.188952,0.65525 C,0,-0.576435,-3.650234,-0.619176 C,0,0.454518,-3.333263,1.522882 C,0,4.839575,-0.089076,-1.031115 C,0,4.430293,1.429929,0.781414 C,0,-0.286133,-4.119038,0.652115 C,0,5.318466,0.787417,-0.067634 C,0,-2.366321,-0.694949,1.045548 C,0,-3.047607,-0.878124,-1.301509 C,0,-2.95717,-1.935379,1.28263

C,0,-3.634132,-2.110511,-1.013374 C,0,-3.564455,-2.671977,0.262027 H,0,-2.936519,-2.342301,2.292496 H,0,-4.135109,-2.655381,-1.810183 C,0,-3.121413,3.153962,0.1461 C,0,-0.854493,3.847182,-0.484739 C,0,-3.405006,4.489734,0.437985 C,0,-1.191716,5.160831,-0.16835 C,0,-2.457689,5.502697,0.30457 H,0,-4.404934,4.744511,0.781546 H,0,-0.444228,5.939483,-0.30373 C,0,-1.74526,0.052266,2.200436 H,0,-1.815296,1.137659,2.074429 H,0,-2.249997,-0.21768,3.132433 H,0,-0.680842,-0.179636,2.311763 C,0,-3.124349,-0.327685,-2.704955 H,0,-3.416842,0.729001,-2.717396 H,0,-2.158704,-0.408785,-3.216495 H,0,-3.860004,-0.883365,-3.292017 C,0,-4.07492,-4.062406,0.524935 H,0,-4.537351,-4.140981,1.513097 H,0,-4.805621,-4.370878,-0.227231 H,0,-3.244806,-4.779056,0.493372 C,0,-4.23974,2.153996,0.327387 H,0,-4.423636,1.559839,-0.572527 H,0,-4.035711,1.453036,1.142499 H,0,-5.164864,2.683249,0.568941 C,0,0.540187,3.580318,-1.002461 H,0,0.987012,4.510154,-1.363255 H,0,1.179176,3.172388,-0.213489 H,0,0.547574,2.865769,-1.834317 C,0,-2.78487,6.925569,0.669005 H,0,-3.865016,7.086806,0.714689 H,0,-2.367637,7.176853,1.650818 H,0,-2.36188,7.628434,-0.054761 B,0,0.994037,-0.022259,-0.437765 C,0,0.606257,-1.568245,-0.162105 C,0,2.54686,0.321442,-0.295706 0,0,0.08403,0.925927,0.124047 P,0,-1.266469,1.160856,-0.760302 C,0,-2.37747,-0.191105,-0.271895 C,0,-1.820595,2.827034,-0.296694

References:

- 1. Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew. Chem., Int. Ed. **2015**, 54, 6604.
- 2. Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics 1998, 17, 5492.
- (a) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101; (b) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 5121.
- 4. Zhao, Y.; Truhlar, D. G. *Theo. Chem. Acc.* **2008**, *120*, 215.
- (a) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639-5648. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.
- 6. Scalmani, G.; Frisch, M. J.; Map, V. J. Chem. Phys. 2010, 132, 114110.
- 7. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.