Supporting Information

Surface Phosphation of 3D Mesoporous NiCo₂O₄ Nanowire Arrays as a Bifunctional

Anode for Lithium and Sodium Ion Battery

Wenda Qiu,*ab Hongbing Xiao,a Wenting He,a Juanhua Li, An Luo,a Yu Li, a and Yexiang

Tong^b

^a School of Eco-Environmental Technology, Guangdong Industry Polytechnic, 152 Xingang

West Road, Guangzhou 510300, China.

^b MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of

Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun

Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, China.

*Corresponding Author. E-mail: <u>Qiuwdgq@hotmail.com</u>

Fig. S1 SEM images of (a) NiCo₂O₄ NWAs, (b) P-NiCo₂O₄ NWAs.

Fig. S2 N₂ adsorption-desorption isotherm of the NiCo₂O₄ NWAs (a) and P-NiCo₂O₄ NWAs (b). The inset is the corresponding pore size distribution.

Fig. S3 (a) TEM, (b) HRTEM images of pristine $NiCo_2O_4$ NWAs. (b) is lattice-resolved TEM image of selective area in the region marked with a green dotted circle.

Fig. S4 (a) XPS survey spectra of P-NiCo₂O₄ NWAs. (b) FTIR spectra of NiCo₂O₄ NWAs and P-NiCo₂O₄ NWAs. Both tests were scratched down from the Ni foam.

Fig. S5 (a, b) 1st, 2nd, 5th, 10th CV curves at the scanning rate of 0.2 mV s⁻¹ of NiCo₂O₄ NWAs and P-NiCo₂O₄ NWAs electrode, respectively; (c, d) Charge/discharge curves at different rates of NiCo₂O₄ NWAs and P-NiCo₂O₄ NWAs electrode, respectively.

Fig. S6 Cycling performance collected at 200 mA g^{-1} of P-NiCo₂O₄ NWAs electrode with different phosphating temperature (a) and different phosphating time (b).

Fig. S7 (a) SEM image and (b) P 2p core-level XPS spectrum of the P-NiCo₂O₄ NWAs electrode after 1500 cycles for LIBs.

Fig. S8 (a) Linear sweep voltammetry curves at 10 mV s⁻¹ and (b) calculated linear resistivities of the NiCo₂O₄ NWAs and P-NiCo₂O₄ NWAs electrodes.

Fig. S9 Long cycling test of the P-NiCo₂O₄ NWAs and carbon cloth for (a) Li storage and (b) Na storage 200 mA g^{-1} .

Type of material	Capacity (mA h g ⁻¹)	Rate performance	Cyclability (cycles)	Ref.
P-NiCo ₂ O ₄ NWAs	1156 (200 mA g ⁻¹)	62.6% (100 to 1000 mA g^{-1})	91.7% (1500)	This work
NiCo ₂ O ₄ –C nanorods	1150 (100 mA g ⁻¹)	57% (100 to 2000 mA $g^{-1})$	79.8% (200)	[1]
NiCo ₂ O ₄ nanosheets	1149 (100 mA g ⁻¹)	42.3% (100 to 1000 mA $g^{-1})$	86% (50)	[2]
NiCo ₂ O ₄ microflowers	1127 (200 mA g ⁻¹)	41% (100 to 1600 mA g^{-1})	75.2% (60)	[3]
rGO/NiCo2O4	1095 (200 mA g ⁻¹)	35.7% (100 to 1000 mA g^{-1})	81.7% (500)	[4]
NiCo ₂ O ₄ /carbon textiles	1053 (200 mA g ⁻¹)	58.7% (200 to 3000 mA g^{-1})	84% (100)	[5]
NiCo ₂ O ₄ @SnO ₂ @C	1016 (100 mA g ⁻¹)	31.7% (100 to 1000 mA g^{-1})	55.6% (100)	[6]
NiCo ₂ O ₄	$1003 (200 \text{ mA g}^{-1})$	31% (100 to 1600 mA g^{-1})	61.6% (500)	[7]
NiCo ₂ O ₄ nanorods	1002 (100 mA g ⁻¹)	44.9% (100 to 2000 mA g^{-1})	67.7% (150)	[8]
NiCo ₂ O ₄ -RGO	974 (100 mA g ⁻¹)	41% (100 to 800 mA $g^{-1})$	80.1% (70)	[9]
Flower-like NiCo ₂ O ₄	958 (150 mA g ⁻¹)	46.3% (150 to 2000 mA g^{-1})	82% (60)	[10]
NiCo ₂ O ₄ hollow spheres	931 (150 mA g ⁻¹)	57% (150 to 2000 mA $g^{-1})$	78% (100)	[11]
NiCo ₂ O ₄ @NiCo ₂ O ₄ NCA	925 (120 mA g ⁻¹)	44% (120 to 960 mA g^{-1})	89.7% (100)	[12]
NiCo ₂ O ₄ NWAs	912 (200 mA g ⁻¹)	15% (100 to 1000 mA g^{-1})	27.1% (50)	[13]
Plum-like NiCo ₂ O ₄	838 (100 mA g ⁻¹)	62.6% (100 to 1000 mA g^{-1})	96% (50)	[14]
UNF@NiCo ₂ O ₄	815 (100 mA g ⁻¹)	50.2% (100 to 800 mA g^{-1})	76.4% (100)	[15]

Table S1. Comparison of lithium storage performance of different $NiCo_2O_4$ electrodes.

Type of material	Capacity (mA h g ⁻¹)	Rate performance	Cyclability (cycles)	Ref.
P-NiCo₂O₄ NWAs	687 (100 mA g ⁻¹)	54.5% (100 to 1000 mA g ⁻¹)	83.5% (500)	This
		、 U /		work
NiCo ₂ O ₄ -NBs	635 (50 mA g ⁻¹)	No data	51.6% (30)	[16]
NiCo ₂ O ₄ -UNSs	610 (100 mA g ⁻¹)	24.6% (100 to 1000 mA g^{1})	32.4% (50)	[17]
NiCo ₂ O ₄	594 (100 mA g^{-1})	41.5% (50 to 500 mA $g^{-1})$	No negligible	[18]
NiCo ₂ O ₄ @CFC	547 (100 mA g^{-1})	47.7% (50 to 400 mA g^{-1})	81% (50)	[19]
NiCo ₂ O ₄				50.03
microrods	431 (100 mA g ⁻¹)	30.3% (100 to 1000 mA g ⁻¹)	No data	[20]
NiCo ₂ O ₄ @G	405 (100 mA g ⁻¹)	28.2% (100 to 3200 mA $g^{-1})$	95% (100)	[21]
NiCo ₂ O ₄	395 (50 mA g ⁻¹)	75.6% (50 to 400 mA $g^{-1})$	67.8% (50)	[22]
C@SnO _x /Cu	893 (50 mA g ⁻¹)	29.3% (50 to 1000 mA $g^{-1})$	86.5% (100)	[23]
SnO-2L	743 (100 mA g ⁻¹)	53.5% (100 to 2000 mA g^{-1})	76% (100)	[24]
C@SnS/SnO ₂ @Gr	726 (30 mA g ⁻¹)	42.3% (30 to 7290 mA $g^{-1})$	73.8% (500)	[25]
Fe ₂ O ₃ /rGO	613 (50 mA g ⁻¹)	34% (50 to 2000 mA $g^{-1})$	71.2% (100)	[26]
SnO ₂ /CNT	$323 (100 \text{ mA g}^{-1})$	53.3% (100 to 1600 mA g^{-1})	63.5% (100)	[27]
TiO ₂ /C nanofiber	254 (50 mA g ⁻¹)	64.8% (50 to 2000 mA $g^{-1})$	84% (1000)	[28]
MoO _{3-x}	165 (50 mA g ⁻¹)	48.6% (50 to 1000 mA g^{-1})	No negligible	[29]
rGO-TiO ₂	128 (20 mA g ⁻¹)	44.7% (50 to 4000 mA $g^{-1})$	69.8% (300)	[30]

Table S2. Comparison of sodium storage performance of different NiCo₂O₄ electrodes.

References

- [1] L. Peng, H. Zhang, Y. Bai, J. Yang, Y. Wang, J. Mater. Chem. A, 2015, 3, 22094.
- [2] A.K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H.J. Ahn, G. Wang, *ChemPhysChem*, 2015, 16, 169.
- [3] J. Xu, L. He, W. Xu, H. Tang, H. Liu, T. Han, C. Zhang, Y. Zhang, *Electrochim. Acta*, 2014, 145, 185-192.

- [4] G. Gao, H.B. Wu, X.W.D. Lou, Adv. Energy Mater., 2014, 4, 1400422.
- [5] L. Shen, Q. Che, H. Li, X. Zhang, Adv. Funct. Mater., 2014, 24, 2630.
- [6] G. Gao, H.B. Wu, S. Ding, X.W.D. Lou, Small, 2015, 11, 432.
- [7] J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, ACS Appl. Mater. Interfaces, 2013, 5, 981.
- [8] Z. Ju, G. Ma, Y. Zhao, Z. Xing, Y. Qiang, Y. Qian, Part. Part. Syst. Char., 2015, 32, 1012.
- [9] Y. Chen, M. Zhuo, J. Deng, Z. Xu, Q. Li, T. Wang, J. Mater. Chem. A, 2014, 2, 4449.
- [10] L. Li, Y. Cheah, Y. Ko, P. Teh, G. Wee, C. Wong, S. Peng, M. Srinivasan, J. Mater. Chem. A, 2013, 1, 10935.
- [11] L. Shen, L. Yu, X.Y. Yu, X. Zhang, X.W.D. Lou, Angew. Chem. Int. Ed., 2015, 54, 1868.
- [12] J. Cheng, Y. Lu, K. Qiu, H. Yan, J. Xu, L. Han, X. Liu, J. Luo, J.-K. Kim, Y. Luo, Sci. Rep., 2015, 5, 12099.
- [13] G. Chen, J. Yang, J. Tang, X. Zhou, RSC Adv., 2015, 5, 23067.
- [14] T. Li, X. Li, Z. Wang, H. Guo, Y. Li, J. Mater. Chem. A, 2015, 3, 11970.
- [15] J. Pu, Z. Liu, Z. Ma, J. Wang, L. Zhang, S. Chang, W. Wu, Z. Shen, H. Zhang, J. Mater. Chem. A, 2016, 4, 17394.
- [16] J. Chen, Q. Ru, Y. Mo, S. Hu, X. Hou, Phys. Chem. Chem. Phys., 2016, 18, 18949.
- [17] K. Zhou, Z. Hong, C. Xie, H. Dai, Z. Huang, J. Alloys and Compounds, 2015, 651, 24.
- [18] X. Zhang, Y. Zhao, C. Wang, X. Li, J. Liu, G. Yue, Z. Zhou, J. Mater. Sci., 2016, 51, 92965.
- [19] Y. Mo, Q. Ru, J. Chen, X. Song, L. Guo, S. Hu, S. Peng, J. Mater. Chem. A, 2015, 3, 19765.
- [20] F. Fu, J. Li, Y. Yao, X. Qin, Y. Dou, H. Wang, J. Tsui, K.-Y. Chan, M. Shao, ACS Appl. Mater. Interfaces, 2017, 9, 16194.
- [21] Y. Wang, H. Huang, Q. Xie, Y. Wang, B. Qu, J. Alloys and Compounds, 2017, 705, 314.
- [22] H. Kou, X. Li, H. Shan, L. Fan, B. Yan, D. Li, J. Mater. Chem. A, 2017, 5, 17881.
- [23] H. Bian, X. Xiao, S. Zeng, M.-F. Yuen, Z. Li, W. Kang, Y. Denis, Z. Xu, J. Lu, Y.Y. Li,

J. Mater. Chem. A, 2017, 5, 2243.

- [24] F. Zhang, J. Zhu, D. Zhang, U. Schwingenschlögl, H.N. Alshareef, *Nano Lett.*, 2017, 17, 1302.
- [25] Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Angew. Chem. Int. Ed., 2016, 55, 3408.
- [26] T. Li, A. Qin, L. Yang, J. Chen, Q. Wang, D. Zhang, H. Yang, ACS Appl. Mater. Interfaces, 2017, 9, 19900.
- [27] J. Cui, Z.-L. Xu, S. Yao, J. Huang, J.-Q. Huang, S. Abouali, M.A. Garakani, X. Ning, J.-K. Kim, *J. Mater. Chemistry A*, 2016, 4, 10964.
- [28] Y. Xiong, J. Qian, Y. Cao, X. Ai, H. Yang, ACS appl. Mater. Interfaces, 2016, 8, 16684.
- [29] Y. Li, D. Wang, Q. An, B. Ren, Y. Rong, Y. Yao, J. Mater. Chem. A, 2016, 4, 5402.
- [30] Y. Xiong, J. Qian, Y. Cao, X. Ai, H. Yang, J. Mater. Chem. A, 2016, 4, 11351.