Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Improved thermoelectric performance of copper-deficient compounds $Cu_{2.5+\delta}In_{4.5}Te_8$ (δ =0-0.15) with an excess of Cu caused by formation of impurity bands and reduction in lattice thermal conductivity

Ting Ren^{a,b} Pengzhan Ying^b, Gemei Cai^c, Xiaoyan Li^d, Zhongkang Han^d, Lei Min^{a,b} Jiaolin Cui^{b*}

Fig. S1 EPMA mappings of three elements on polished $Cu_{2.6}In_{4.5}Te_8$ surface (a) Cu, (b) In, (c) Te, (d) an EDAX pattern.

Table S1 Average chemical compositions (relative molars) identified in $Cu_{2.5}In_{4.5}Te_8$ and $Cu_{2.6}In_{4.5}Te_8$ (taken from different mappings)

Compounds	Cu	In	Te
Cu _{2.5} In _{4.5} Te ₈	2.53	4.51	8.0
Cu _{2.6} In _{4.5} Te ₈	2.62	4.53	8.0

Fig. S2 Rietveld refinements using X-ray diffraction data of four compounds $Cu_{2.5+\delta}In_{4.5}Te_8$ (δ =0, 0.05, 0.1, 0.15).

Fig. S3 XRD patterns of the powders of $Cu_{2.5+\delta}In_{4.5}Te_8$ (δ =0, 0.05, 0.1, 0.15, 0.2).

Fig. S4 Crystal structures of $Cu_{28+y}In_{33}Te_{64}$ (*y*=0-4) assuming that added Cu atoms reside in the Cu vacancy.

Fig. S5 Close-up view of the impurity band (IB) in the density of the states (DOS) of $Cu_{28+y}In_{33}Te_{64}$ (*y*=0-4) system.

Fig. S6 Differential scanning calorimetry (DSC) and weight loss (TG) signals as a function of temperature for Cu_{2.5} In_{4.5}Te₈.