Electronic Supplementary Information

East Indian sandalwood (*Santalum album* L.) oil confers neuroprotection and geroprotection in *Caenorhabditis elegans* via activating SKN-1/Nrf2 signaling pathway

A. Mohankumar ^{a*}, G. Shanmugam ^a, D. Kalaiselvi ^a, C. Levenson ^b, S. Nivitha ^c, G. Thiruppathi ^a, P. Sundararaj ^{a*}

^aUnit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India.

^bSantalis Pharmaceuticals Inc., 18618 Tuscany Stone, Suite 100, San Antonio, Texas 78258, USA.

^cCollege of Science, Northeastern University, Boston, Massachusetts 02115, USA.

*Correspondence to:

Dr. P. Sundararaj or A. Mohankumar Unit of Nematology, Department of Zoology Bharathiar University, Coimbatore, Tamilnadu-641046, India. E-mail: <u>sunpalan@gmail.com</u> or <u>amkkmohan@gmail.com</u> Tel: +91-9943340405 or +91-9677667720 Fax: +91-422-2422387.

TABLE OF CONTENTS

S. No.	Title	Page
	Tables	
1.	Genotypic and phenotypic description of <i>C. elegans</i> strains used	3
2.	Toxicity assessment of EISO, α - and β -santalols on wild type <i>C. elegans</i>	6
3.	Effect of EISO, α - and β -santalol on the reproduction and growth	7
4.	Lifespan analysis of NL5901 C. elegans	9
5.	EISO and santalol isomers mediated longevity in wild-type C. elegans	10
6.	Influences of EISO, α - and β -santalol on CED-1::GFP expression	11
7.	Genetic requirement for EISO, α - and β -santalol-mediated geroprotection	12
8.	Predicted ADME properties of santalol isomers	14
	Figures	
1.	Effect on the development and morphology of GABAergic motor neurons	15
2.	Beneficial effect of EISO on the lifespan of NL5901 C. elegans	16
3.	ROS level and germ cell apoptosis in mitochondrial ETC pathway mutants	17
4.	Effect of EISO, α - and β -santalol on the expression of <i>skn-1::gfp</i> transgene	18
5.	Relative expression of <i>ctl-1,2,3p::GFP</i> transgene in GA800 <i>C. elegans</i>	19
6.	Interaction of α - and β -santalol with Klech domain of Keap1	20
7.	Validation of the modeled WDR-23 protein structure	21
8.	Ramachandran plot of modeled WDR-23 protein	23
9.	Certificate of analysis (α-Santalol)	24
10.	Certificate of analysis (β-Santalol)	33

Table 1

Genotype	Gene description	Phenotype
N2		Wild type
mev-1 (kn1)	<i>mev-1</i> encodes succinate dehydrogenase cytochrome b560 subunit of mitochondrial respiratory chain complex II, which is essential for oxidative phosphorylation	Stress and oxygen sensitive. Short life span
isp-1 (qm150)	<i>isp-1</i> encodes a Rieske iron sulphur protein (ISP) which is a subunit of the mitochondrial complex III	Low oxygen consumption, resistance to stress, slow development, and long lived
clk-1 (e2519)	<i>clk-1</i> encodes demethoxyubiquinone (DMQ) hydroxylase that is necessary for the biosynthesis of ubiquinone	Low oxygen consumption, resistance to stress, slow development, and long lived
daf-2 (e1370)	<i>daf-2</i> encodes a receptor tyrosine kinase that is the <i>C. elegans</i> insulin/IGF receptor ortholog. DAF-2 regulates various biological process	Long lived, Temperature sensitive dauer constitutive
akt-1 (ok525)	<i>akt-1</i> encodes an ortholog of the serine/threonine kinase Akt/PKB and downstream of IIS pathway	Long lived
daf-16 (mgDf50)	<i>daf-16</i> encodes <i>C. elegans</i> homologue of forkhead box O (FOXO) transcription factor regulates dauer formation, longevity, fat metabolism, stress response, and innate immunity in a IIS dependent manner	Dauer defective. Short lived
lin-45 (n2520)	<i>lin-45</i> encodes an ortholog of the RAF family of serine/threonine kinases (MAPKKK) and is necessary for larval viability and vulval differentiation. LIN-45 is an upstream regulator of ERK MAPK	
mek-2 (n1989)	<i>mek-2</i> encodes a MAP kinase kinase and it function as core regulator of Ras-mediated signaling in the regulation of multiple biological processes	

mpk-1 (ku1)	<i>mpk-1</i> encodes a <i>C. elegans</i> ortholog of ERK MAPK	Susceptibility to pathogens
skn-1 (zu67)	<i>skn-1</i> encodes basic-leucine zipper transcription factor orthologous to the mammalian Nrf	
wdr-23 (tm1817)	<i>wdr-23</i> ncodes a WD40 repeat- containing protein; WDR-23 functions as part of a CUL-4/DDB- 1 ubiquitin ligase complex that negatively regulates accumulation and hence, transcriptional activation activity of the SKN-1 transcription factor in intestinal nuclei.	Long lived, resistance to stress
egl-1 (n1084n3082)	<i>egl-1</i> encodes a novel protein that contains a region similar to the BH3 (Bcl-2 homology region 3) domain of mammalian cell death activators	
ced-9 (n1950)	<i>ced-9</i> encodes the sole <i>C. elegans</i> homolog of the mammalian cell- death inhibitor Bcl-2.	Dominant maternal effect. Survival of cells which normally undergo programmed cell death.
ced-4 (n1162)	<i>ced-4</i> encodes a novel protein; along with CED-3, CED-4 is required for the initiation of programmed cell death	
ced-3 (n717)	<i>ced-3</i> encodes a caspase, a cysteine-aspartate protease; CED-3 activity is required for execution of apoptosis and functions in a conserved genetic pathway with CED-4, CED-9, and EGL-1 to regulate apoptosis during <i>C</i> . <i>elegans</i> development.	Abnormal cell death. Cells that normally die survive
oxIs12 (unc- 47p::GFP + lin-15)	unc-47p::GFP	Expression of GFP in all eight GA neurons.
ldIs7 (skn-1::GFP)	skn-1 b/c::GFP	Stress-inducible expression of GFP in intestinal nuclei and ASI neurons, roller
dvIs19 (gst-4::GFP)	gst-4p::GFP	Oxidative stress-inducible/SKN-1 dependent GFP expression in whole body
ldIs3 (gcs-1::GFP)	gcs-1p::GFP	Oxidative stress-inducible/SKN-1 dependent GFP expression in pharynx and mid-body

wuIs151 (ctl-	<i>ctl-1,2,3p::GFP</i>	Expression of GFP in pharynx			
1,2,3::GFP)		region, slow growing			
bcIs39 (lim-7p::ced-	ced-1::GFP	Expression of functional CED-			
1::GFP + lin-15)		1::GFP fusion protein in the sheath			
		cells.			
opIs3 (hus-1::GFP)	hus-1::GFP	Nuclear expression of GFP in germ			
		cells and embryos			
pkIs2386 (unc-	unc-54p::alpha-synuclein::YFP	Expression of YFP fused α-			
54p::alpha-		synuclein expression in body wall			
synuclein::YFP+unc-		muscle cells			
119)					
egIs1 (dat-1p::GFP)	dat-1p::GFP	GFP observable in all eight DA			
		neuron soma and processes			
Gene and phenotype description of worm strains used also available at wormbase					
(www.wormbase.org),	, and Caenorhabditis Genetics Centre	(www.cgc.umn.edu).			

Table. 1. Genotypic and phenotypic description of C. elegans strains used.

	T	EISO	T	α-Santalol	β-Santalol
	Ireatment	% Survival	Ireatment	% Survival	% Survival
• • -	Control	100	Control	100	100
Acute	3 μg/mL	98.86±0.58	2 μΜ	100	99.54±0.46
Exposure	6 μg/mL	99.34±0.44	4 μΜ	99.68±0.32	98.63±0.95
(24 n from L4 stage)	12 μg/mL	100	8 μΜ	99.70±0.30	100
	24 µg/mL	100	16 µM	99.18±0.55	99.72±0.28
	48 μg/mL	98.75±0.63	32 µM	99.12±0.61	99.07±0.92
			64 µM	99.13±0.58	99.35±0.43
	Control	88.41±2.13	Control	88.96±1.93	86.05±1.71
Chronic	3 μg/mL	87.90±2.64	2 µM	87.76±2.34	85.84±2.34
Exposure	6 μg/mL	87.97±2.17	4 μΜ	87.22±1.55	86.32±2.23
(120 h from	12 μg/mL	90.60±2.28	8 μΜ	86.03±1.82	90.98±1.86
L1 stage)	24 µg/mL	92.48±2.14	16 µM	92.81±0.82	92.73±1.23
~	48 µg/mL	89.70±1.67	32 µM	93.98±1.19	90.07±1.96
			64 µM	90.51±1.52	89.08±1.92

Table 2

Table 2. Toxicity assessment of EISO, α - and β -santalols on wild type *C. elegans*. Acute and chronic exposure to various pharmacological doses/molarities of EISO and its principal components did not significantly affect the survival of nematodes (n=20~25/replicate) compared to control at 20°C. Data are presented as mean±SEM of three independent runs, and analyzed by one way analysis of variance (ANOVA) followed by Bonferroni post-hoc test.

Table 3

Strain	Strain Treatn		Brood size	% Change	Body length	%
		incirt	(Mean±SEM)	70 Change	(mm)	Change
		Control	257.78±4.29		1.19±0.03	
		3 μg/mL	258.00±6.15	(+) 0.09	1.21±0.03	(+) 1.68
	FISO	6 μg/mL	257.22±6.16	(-) 0.22	1.18±0.04	(-) 0.84
	LISU	12 μg/mL	254.78±4.23	(-) 1.16	1.19±0.03	0
		24 μg/mL	258.33±3.36	(+) 0.21	1.20±0.03	(+) 0.42
		48 µg/ml	254.00±5.40	(-) 1.47	1.19±0.05	0
		Control	259.89±3.81		1.22±0.03	
		2 µM	255.89±6.77	(-) 1.54	1.20±0.04	(-) 1.65
		4 µM	256.44±5.18	(+) 0.21	1.21±0.04	(+) 1.26
NO	α-Santalol	8 μM	255.44±4.46	(-) 1.71	1.20±0.05	(-) 1.23
INZ		16 μM	256.44±4.43	(-) 1.33	1.19±0.04	(-) 2.47
		32 µM	254.00±5.40	(-) 2.27	1.20±0.05	(-) 3.29
		64 μM	258.00±6.54	(-) 0.73	1.21±0.06	(-) 0.82
		Control	257.56±3.90		1.20±0.05	
		2 µM	257.00±4.83	(-) 0.22	1.20±0.04	(+) 0.42
		4 µM	262.11±5.32	(+) 1.77	1.18±0.04	(-) 1.26
	β-Santalol	8 µM	259.56±4.03	(+) 0.78	1.20±0.03	0
		16 μM	259.33±2.44	(+) 0.69	1.27±0.02	(+) 6.28
		32 µM	258.33±6.09	(+) 0.30	1.20±0.04	0
		64 μM	256.00±8.93	(-) 0.61	1.19±0.03	(-) 0.42
		Control	205.11±4.42		1.19±0.03	
	FIGO	$3 \mu g/mL$	200.11±4.09	(-) 2.44	1.16±0.03	(-) 2.94
		6 µg/mL	206.33±7.01	(+) 0.60	1.14±0.03	(-) 4.62
	EISO	$12 \mu g/mL$	231.22±4.49*	(+) 12.73	1.16±0.04	(-) 2.52
		$24 \mu\text{g/mL}$	240.22±5.98**	(+) 17.12	1.14±0.07	(-) 3.87
		48 µg/ml	212.78±6.91	(+) 3.74	1.09±0.07	(-) 8.49
		Control	203.89±4.88		1.17±0.04	
		2 µM	208.33±4.63	(+) 2.18	1.17±0.04	(+) 0.43
		4 µM	208.56±8.68	(+) 2.29	1.16±0.03	(-) 0.43
NT 5001	α-Santalol	8 μM	209.78±6.86	(+) 2.89	1.14±0.03	(-) 2.15
NL5901		16 μM	231.89±2.93*	(+) 13.73	1.18±0.07	(+) 1.20
		32 µM	240.89±4.16**	(+) 18.15	1.12±0.03	(-) 3.86
		64 μM	224.00±7.63	(+) 9.86	1.19±0.05	(+) 1.71
		Control	209.00±4.99		1.12±0.03	
		2 µM	210.78±4.00	(+) 0.85	1.14±0.04	(+) 1.79
		4 µM	209.56±6.21	(+) 0.27	1.12±0.07	(-) 0.09
	β-Santalol	8 μM	236.00±3.99*	(+) 12.92	1.17±0.03	(+) 4.46
	-	16 μM	254.44±3.74**	(+) 21.74	1.24±0.04	(+) 10.27
		32 µM	228.22±5.33	(+) 9.20	1.11±0.03	(-) 1.34
		64 μM	229.56±3.97	(+) 9.84	1.14±0.04	(+) 1.79

Table 3. Effect of EISO, α - and β -santalol on the reproduction and growth of wild type or NL5901 *C. elegans*. For reproduction assay, L1 stage N2 worms (30~35 worms/treatment) were raised on to NGM plates with and without EISO or santalol isomers for 72 h. Then, worms were individually shifted to fresh treatment plates each day until the reproduction period becomes ceased. Total eggs and offspring were counted at the L2/L3 stage. Growth was determined by measuring body length of the nematode of control and treated groups. L1 stage worms (30~40 worms/treatment) were treated with and without EISO or santalol isomers for 96 h. After exposure, day 1 worms subjected to analysis for body length measurement using Optika IsView image analyzing system. Data are presented as mean±SEM of three independent runs, and analyzed by one way analysis of variance (ANOVA) followed by Bonferroni post-hoc test. Asterisks (* and **) indicate statistically significant difference (p<0.05 and p<0.001).

Treatment		Mean survival (days±SEM)	% Change	Maximum lifespan (days)	Sample Size (N)	Censored	<i>p</i> value
	Control	10.383±0.350		14	99	9	
	3 μg/mL	10.089±0.361	(-) 2.83	14	93	10	0.8463
FISO	6 μg/mL	10.142±0.351	(-) 2.32	15	94	11	0.7075
EISO	12 μg/mL	11.863±0.342	(+)14.25	17	105	8	0.0003
	24 µg/mL	13.491±0.361	(+) 29.93	18	94	8	0.0001
	48 µg/ml	9.950±0.323	(-) 4.1	14	93	9	0.1804
	Control	10.253±0.320		14	96	8	
	2 µM	10.080±0.335	(-) 1.69	14	88	3	0.6057
	4 μM	10.121±0.342	(-) 1.29	14	88	6	0.8528
α-Santalol	8 μΜ	10.502±0.326	(+) 2.43	15	90	5	0.8683
	16 µM	10.751±0.315	(+) 4.86	15	98	5	0.2110
	32 μM	12.532±0.359	(+) 22.23	19	102	0	0.0001
	64 µM	10.967±0.360	(+) 6.96	15	95	2	0.1558
	Control	10.922±0.329		15	99	5	
	2 µM	10.366±0.340	(-) 5.09	15	97	6	0.3819
	4 μM	10.259±0.339	(-) 6.07	15	91	4	0.0976
β-Santalol	8 μM	11.308±0.342	(+) 3.53	18	112	8	0.1700
	16 µM	14.086±0.408	(+) 28.97	20	94	0	0.0001
	32 µM	10.846±0.408	(-) 0.70	17	104	2	0.7590
	64 μM	10.867±0.309	(-) 0.50	16	105	2	0.9194

Table 4

Table 4. Lifespan analysis of NL5901 *C. elegans* cultured at 20°C supplemented with various pharmacological doses of EISO, α - and β -santalol. The mean lifespan of NL5901 worms were calculated using Kaplan–Meir survival analysis and significance levels were estimated by long-rank test in Medcalc statistical tool.

Table !	5
---------	---

Genotype	Treatment	Mean survival (Mean±SEM)	Maximum lifespan (days)	Sample size (N)	Censored	% Change	<i>p</i> value	
	EISO							
	Control	15.305±0.423	23	110	12			
	3 μg/mL	15.449±0.454	24	98	11	(+) 0.94	0.7267	
	6 μg/mL	16.620±0.502	25	115	14	(+) 8.59	0.0025	
	12 μg/mL	17.922±0.593	28	112	14	(+) 17.10	< 0.0001	
	24 μg/mL	19.339±0.586	31	100	8	(+) 26.36	< 0.0001	
	48 μg/mL	15.951±0.528	24	94	6	(+) 4.22	0.9699	
	α-Santalol							
	Control	15.486±0.449	24	121	13			
Wild	4 μM	15.577±0.422	23	118	8	(+) 0.63	0.8914	
(From late	8 μΜ	15.878±0.475	23	103	9	(+) 2.57	0.6466	
L4 stage)	16 μM	16.151±0.528	24	119	10	(+) 4.33	0.0901	
	32 μM	17.076±0.478	26	113	7	(+) 10.31	< 0.0074	
	64 μM	15.626±0.493	24	120	11	(+) 0.94	0.4619	
	β-Santalol							
	Control	17.550±0.425	24	130	14			
	4 μM	17.071±0.470	24	119	13	(-) 2.73	0.4249	
	8 µM	18.016±0.458	26	129	14	(+) 2.66	0.3892	
	16 μM	19.754±0.515	30	142	9	(+) 12.56	< 0.0001	
	32 μM	18.214±0.487	26	123	7	(+) 3.78	0.0975	
	64 μM	18.364±0.511	26	125	15	(+) 4.64	0.0311	
W/:1.1	Control	15.086±0.379	23	114	10			
Wild (Erom	EISO (24 µg/mL)	19.811±0.577	30	125	8	(+) 31.32	< 0.0001	
(FIOIII	α -Santalol (32 μ M)	17.807±0.513	26	106	5	(+) 18.04	< 0.0001	
embryo)	β-Santalol (16 μM)	18.915±0.642	30	113	9	(+) 25.38	< 0.0001	

Table 5. EISO and santalol isomers mediated longevity in wild-type *C. elegans*. Survival rate of wild-type *C. elegans* cultured on NGM plates supplemented with various pharmacological doses of EISO, α - and β -santalol at 20°C from late L4 stage or embryo. The mean lifespan of *C. elegans* were calculated using Kaplan–Meir survival analysis and significance levels were estimated by long-rank test in Medcalc statistical tool. For the analysis of statistical significance, treated groups were compared with control group.

Transgene	Treatment	CED-1::GFP clusters around cell corpses
	Control	$0.44{\pm}0.08$
	6-OHDA	3.42±0.27 #
	6-OHDA/EGCG	1.24±0.15 **
	6-OHDA/EISO	1.16±0.13 **
ced-1::GFP	6-OHDA/α-Santalol	1.52±0.13 **
	6-OHDA/β-Santalol	1.06±0.14 **
	EISO	0.33±0.21
	α-Santalol	0.33±0.21
	β-Santalol	0.17 ± 0.17

Table 6

Table 6. Influences of EISO, α - and β -santalol on CED-1::GFP expression in *C. elegans*. The 6-OHDA-induced elevation in clustering of CED-1::GFP around cell corpses was greatly attenuated with EISO, α - and β -santalol treatment in MD701 *C. elegans*. Data were pooled from biological triplicates in experimental duplicates and presented as mean±SEM. A hash (#) mark indicates significant differences (*p*<0.001) between 6-OHDA exposed and unexposed (control) worms, an asterisk (**) indicate significant difference between 6-OHDA exposed and 6-OHDA/EGCG, EISO, α - or β -santalol treated groups (*p*<0.001).

Table 7

Genotype	Treatment	Mean survival (Mean+SEM)	Maximum lifespan	Sample size	Censored	% Change	<i>p</i> value
	Control	$(\text{Ivicall} \pm \text{SEIVI})$ 15 220±0 420	(uays)	100	0	_	
	6-OHDA	13.230 ± 0.429 12.468±0.418	18	8/	9	(-) 18 14	<0.0001
daf-16	6-OHDA/EISO	12.408 ± 0.418 16.257±0.482	24	10/	5	(-) 10.14 (+) 30.39	<0.0001
<i>uuj-10</i>	6-OHDA/a-Santalol	10.237 ± 0.482 15 300±0 466	24	104	8	(+) 30.39	<0.0001
	6-OHDA/R-Santalol	17.300 ± 0.400 17.382+0.482	24	100	8	(+) 22.71 (+) 39.41	<0.0001
	Control	17.382 ± 0.482 27.815+0.834	46	100	11	(') 37.41	<0.0001
	6-OHDA	25 229+0 820	40	113	8	(-) 9 30	0.0199
daf-2	6-OHDA/FISO	32 049+0 973	50	117	10	(+) 27.03	<0.0001
uuj-2	6-OHDA/a-Santalol	30 886+0 898	47	117	6	(+) 27.03 (+) 22.42	<0.0001
	6-OHDA/8-Santalol	34426+1021	54	119	9	(+) 22.12 (+) 36.45	<0.0001
	Control	23.032+0.705	32	89	9	(1) 50.15	40.0001
	6-OHDA	20 567+0 622	27	80	2	(-) 10 70	<0.0001
akt-1	6-OHDA/EISO	19.635 ± 0.645	29	84	8	(-)453	0.3276
	6-OHDA/α-Santalol	18 876±0 592	28	101	10	(-) 8 22	0.6825
	6-OHDA/8-Santalol	20.302 ± 0.747	29	84	4	(-) 1.29	0.2410
	Control	9.77±0.272	14	76	4		
	6-OHDA	7.440±0.255	10	70	7	(-) 23.85	< 0.0001
mev-1	6-OHDA/EISO	11.194±0.292	17	72	1	(+) 50.46	< 0.0001
	6-OHDA/α-Santalol	10.323±0.325	16	74	5	(+) 38.75	< 0.0001
	6-OHDA/β-Santalol	10.268±0.161	18	80	5	(+) 38.01	< 0.0001
	Control	20.733±0.660	32	85	6		
	6-OHDA	17.425±0.507	22	66	10	(-) 15.96	< 0.0001
isp-1	6-OHDA/EISO	24.638±0.715	35	99	9	(+) 41.39	< 0.0001
	6-OHDA/α-Santalol	22.724±0.778	35	89	6	(+) 30.41	< 0.0001
	6-OHDA/β-Santalol	25.702±0.788	36	91	8	(+) 47.50	< 0.0001
	Control	21.244±0.626	28	69	7		
	6-OHDA	14.144±0.572	22	63	7	(-) 33.24	< 0.0001
clk-1	6-OHDA/EISO	15.179±0.570	21	52	4	(+) 7.32	0.3911
	6-OHDA/α-Santalol	14.822±0.644	20	46	5	(+) 4.79	0.5101
	6-OHDA/β-Santalol	15.596±0.324	21	51	3	(+) 10.27	0.2443
	Control	13.086±0.409	17	65	4		
	6-OHDA	11.389±0.388	15	60	5	(-) 12.97	< 0.0001
lin-45	6-OHDA/EISO	11.327±0.335	15	68	7	(-) 0.54	0.6423
	6-OHDA/α-Santalol	10.699±0.310	15	72	0	(-) 6.06	0.6556
	6-OHDA/β-Santalol	11.533±0.170	14	64	7	(+) 1.26	0.0178
	Control	8.234±0.302	12	61	5		
	6-OHDA	7.143±0.231	9	49	2	(-) 13.25	< 0.0001
mek-2	6-OHDA/EISO	7.707±0.214	10	56	6	(+) 7.90	0.0469
	6-OHDA/α-Santalol	7.182±0.226	10	63	5	(+) 0.55	0.6810
	6-OHDA/β-Santalol	6.932±0.211	9	59	3	(-) 2.95	0.4600
	Control	13.832±0.429	22	116	9		0.0001
mpk-1	6-OHDA	11.443±0.312	18	87	7	(-) 17. 27	<0.0001
	6-OHDA/EISO	11.929±0.348	19	103	10	(+) 4.25	0.1164
	6-OHDA/α-Santalol	11.977±0.369	18	107	9	(+) 4.67	0.0854

	6-OHDA/β-Santalol	11.459±0.293	19	98	8	(+) 0.14	0.9061
	Control	15.635±0.348	19	62	3		
	6-OHDA	12.333±0.289	16	65	4	(-) 21.12	< 0.0001
skn-1	6-OHDA/EISO	11.683±0.224	15	63	0	(-) 5.27	0.0097
	6-OHDA/α-Santalol	11.771±0.283	15	66	4	(-) 4.56	0.1591
	6-OHDA/β-Santalol	12.268±0.344	16	65	5	(-) 0.53	0.9686
	Control	22.491±0.595	32	95	7		
wdr-23	6-OHDA	22.702±0.580	32	86	5	(+) 0.94	0.7979
	6-OHDA/EISO	21.878±0.581	31	81	4	(-) 3.63	0.2867
	6-OHDA/α-Santalol	22.078±0.531	31	107	8	(-) 2.75	0.3084
	6-OHDA/β-Santalol	23.126±0.509	32	99	8	(+) 1.87	0.7585

Table 7. Genetic requirement for EISO, α - and β -santalol-mediated geroprotection against 6-OHDA-induced toxicity in *C. elegans*. The mean lifespan of *C. elegans* mutants were calculated using Kaplan–Meir survival analysis and significance levels were estimated by long-rank test in Medcalc statistical tool. For the analysis of statistical significance, 6-OHDA alone treated group was compared with untreated control, and 6-OHDA/EISO, α - or β -santalol treated groups were compared with 6-OHDA alone treated group.

Compound	donorHB ¹	accptHB ²	QPPCaco ³	QPlogBB ⁴	QPPMDCK ⁵	QPlogKp ⁶
Acceptable range	0.0 to 6.0	2.0 to 20.0	<25 poor, >500 great	-3 to -1.2	<25 poor, >500 great	-8 to -1
α-Santalol	1	1.70	3943.57	-0.088	2179.9	-1.775
β-santalol	1	1.70	3371.88	-0.158	1840.421	-1.819

Table 8

Compound	QPlogKhsa ⁷	% Human oral absorption ⁸	Human oral absorption ⁹	Lipinski's rule of five ¹⁰
Acceptable range	-1.5 to 1.5	>80% is high <25% is poor	1-low, 2-medium, 3-high	< 5
α-Santalol	0.365	100	3	0
β-santalol	0.404	100	3	0

Table 8. Predicted ADME properties of santalol isomers using QikProp module.

¹Estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution

²Estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution

³Predicted apparent Caco-2 cell permeability in nm/sec

⁴Predicted brain/blood partition coefficient

⁵Predicted apparent MDCK cell permeability in nm/sec

⁶Predicted skin permeability, log Kp

⁷Prediction of binding to human serum albumin

⁸Predicted human oral absorption on 0 to 100% scale

⁹Predicted qualitative human oral absorption

¹⁰Number of violations of Lipinski's rule of five

Figure 1

Fig. 1. Effect of EISO, α - and β -santalol on the development and morphology of D-type GABAergic motor neurons. Exposure was performed from L1 stage to adult stage.

Figure 2

Fig. 2. Beneficial effect of EISO and its principal components on the lifespan of NL5901 *C. elegans.* The survival graphs showed the effect of dietary supplemented (A) EISO (B1-2) α -santalol and (C1-2) β -santalol on the lifespan of transgenic *C. elegans* strain NL5901 constitutively express human α -synuclein (a Parkinson's related protein) in body wall muscles. The survival curves were plotted using Kaplan-Meier survival analysis and significance levels were estimated by long-rank test in Medcalc statistical software v.14. The representative Kaplan-Meier survival curves from three independent runs were presented.

Fig. 3. Histogram represents the changes in (A) intracellular ROS level and (B) germ cell death/apoptosis in mitochondrial ETC pathway mutants treated with 6-OHDA and 6-OHDA/EISO, α - or β -santalol. Data pooled from three independent biological experiments with appropriate replicates. Probability levels of *p*<0.05 were considered as statistically significant. ***p*<0.01, ^{ns}not significant.

Figure 4

Fig. 4. Effect of EISO, α - and β -santalol on the expression of *skn-1::gfp* transgene in LD1 *C. elegans*. Intestinal and ASI neuronal expression of *skn-1 b/c::GFP* was observed in adult *C. elegans* after treated with 6-OHDA and 6-OHDA/EISO, α - or β -santalol. *skn-1 b/c::GFP* were visualized in under fluorescence microscope and classified into low, medium and high based on expression pattern (see **Fig. 16** in main article). Expression of *skn-1 b/c::GFP* in ASI neurons are indicated by white arrow(s).

Fig. 5. (A) Relative expression of *ctl-1,2,3p::GFP* transgene in GA800 *C. elegans* treated with 6-OHDA, EISO, α -santalol, β -santalol and 6-OHDA/EISO, α - or β -santalol at 20°C. (B) Histogram represents the changes in expression across various treatments. Data shown here are mean±SEM, the probability levels of *p*<0.05 were considered as statistically significant. **p*<0.05, ***p*<0.01 and ^{ns}not significant.

Figure 6

Fig. 6. Proposed interaction of (**A**) α -santalol and (**B**) β -santalol on the binding cleft of Klech domain of Keap1. The representative three-dimensional and two-dimensional interaction map shows the binding mode of α - and β -santalol (stick style in a green color) through hydrogen bonds (yellow dashed lines) with Keap1 (shown in ribbon style and colored shape). The pink arrow in two-dimensional image indicates potential interactions between amino acid residues and α - or β -santalol.

Fig. 7. Investigation of the modeled WDR-23 protein structure. The Z-score (black dot) of this model is -6.22 which is closer to the experimentally resolved X-ray and NMR structures.

Number of residues in favoured region (~98.0% expected)	: 391	7 (87.8%)
Number of residues in allowed region (~2.0% expected)	: 39	(8.6%)
Number of residues in outlier region	: 16	(3.5%)

Figure 8B

Fig. 8. (A, B) Ramachandran plot of modeled WDR-23 protein.

Figure. 9. Certificate of analysis (α-Santalol)

CSQ-15208 AV12066 Revision 0 Page 1 of 9

Certificate of Analysis ISO GUIDE 34 ISO/IEC 17025 150 13485 cis-a-Santalol ISO 9001 GMP/GLP (2Z)-5-[(3R)-2,3-dimethyltricyclo[2.2.1.0^{2,6}]hept-3-yl]-2-methylpent-2-en-1-ol **Reference Number:** CSQ-15208 _он

Lot Number:	AV12066
Retest Date:	June 2013
CAS Number:	115-71-9
Chemical Formula:	C ₁₅ H ₂₄ O
Molecular Weight:	220.35
Chromatographic Purity:	98.2%
Purity Factor ¹ :	96.8%
Storage:	Refrigerate.
Handling:	As specified in the manufacturer MSDS.
Intended Use:	For R&D/ analytical purposes only.

¹ Purity Factor = (100 - wt% residual solvent - wt% residual water) x Chromatographic Purity/100

Spectral and Physical Data

Analytical Test	Method	Results
Appearance	Visual Inspection	Clear oil
Chromatographic Purity by GC/FID Analysis	SP10-0101	98.2% ²
Identity by LC/MS Analysis	SP10-0107	Consistent with Structure
Identity by FTIR Analysis	SP10-0108	Consistent with Structure
Identity by ¹ H-NMR Analysis	USP <761>, SP10-0116	Consistent with Structure
Identity by ¹³ C-NMR Analysis	USP <761>, SP10-0116	Consistent with Structure
Identity by 2D-NMR Analysis	USP <761>, SP10-0116	Consistent with Structure

² Purity value is the average of two independent analyses.

Cerilliant certifies the analyses detailed in this certificate are true and accurate. Retest date assigned at the request of the Customer. Cerilliant has not collected stability and makes no claims or warranty regarding shelf life or stability of material.

July 16, 2012

Date

.

Authorized Signature:

Lara Sparks, Quality Assurance Director

Cerilliant Corporation

811 Paloma Drive, Suite A, Round Rock, TX 78665

800-848-7837 / 512-238-9974

CSQ-15208 AV12066 Revision 0 Page 2 of 9

Spectral and Physical Data (cont.)

,

Analytical Test	Method		Results		
Residual Solvent Analysis by GC/FID Headspace	AM1087 ³		1.22%		
Residual Water Analysis by Karl Fischer Coulometry	USP <921>, SP10-0103	0.21%			
Specific Rotation	SP10-0133		$[\alpha]^{20} {}_{\rm D} = 21.0$	004°	
			Calculated	Analyzed	
Elemental Analysia	5010 0117	С	81.12%	80.92%	
Elemental Analysis	SP10-0117	н	11.00%	10.83%	
		0	7.89%	7.33%	
Inorganic Content by ICP	Outsourced	Re	fer to results of	n page 7	
Thermogravimetric Analysis	SP10-0136	e andre de factories	2.31%		
Refractive Index Analysis	Outsourced		1.4965 at 25	°C	

³ Validated analytical method

CSQ-15208 AV12066 Revision 0 Page 3 of 9

Spectral and Physical Data (cont.)

GC/FID

.

Column:	DB-5ms, 30 m x 0.53 mm ID, 1.5 µm film thickness
Temp Program:	40°C to 160°C at 40°C/min
	160°C to 210°C at 2°C/min
	210°C to 280°C at 10°C/min (hold 5 min)
Injector Temp:	Cool-on-Column
Detector Temp:	325°C
Data File Name:	S:\GC\GC6\2012\0612\F0605204.D
Operator:	RPC
Instrument:	GC#6
Sample Name:	AV12066
Method File:	CISSANTA.M
Acquired:	June 5, 2012 11:48 AM

Peak #	Ret Time	Area	Height	Area %	Peak #	Ret Time	Area	Height	Area %
1	5.06	0.30	0.12	0.00	18	11.13	4.97	1.06	0.02
2	5.38	0.74	0.32	0.00	19	11.33	19935.90	3472.82	98.29
3	6.07	0.89	0.26	0.00	20	11.87	140.45	9.40	0.69
4	7.51	0.38	0.11	0.00	21	12.56	26.65	1.95	0.13
5	7.84	12.92	3.00	0.06	22	13.44	3.33	0.35	0.02
6	8.31	0.60	0.15	0.00	23	13.69	0.18	0.05	0.00
7	8.71	2.76	0.65	0.01	24	13.79	0.39	0.09	0.00
8	9.15	7.25	1.49	0.04	25	13.85	0.77	0.12	0.00
9	9.46	0.61	0.15	0.00	26	14.01	0.18	0.07	0.00
10	9.61	7.93	1.60	0.04	27	14.05	0.35	0.09	0.00
11	9.75	2.33	0.44	0.01	28	14.39	0.35	0.05	0.00
12	9.97	6.88	1.07	0.03	29	15.08	4.89	0.69	0.02
13	10.18	2.46	0.46	0.01	30	15.97	4.54	0.65	0.02
14	10.50	2.91	0.37	0.01	31	16.39	7.28	0.99	0.04
15	10.58	1.19	0.30	0.01	32	17.19	1.75	0.17	0.01
16	10.73	2.05	0.46	0.01	33	17.73	0.66	0.14	0.00
17	10.90	93.63	16.52	0.46	34	34.30	3.84	1.08	0.02

CSQ-15208 AV12066 Revision 0 Page 4 of 9

Spectral and Physical Data (cont.)

Identity by FTIR Analysis

.

CSQ-15208 AV12066 Revision 0 Page 5 of 9

Spectral and Physical Data (cont.)

CSQ-15208 AV12066 Revision 0 Page 6 of 9

Spectral and Physical Data (cont.)

Spectral and Physical Data (cont.)

Residual Solvent Analysis by GC/FID Headspace

Colum	1:	DB-ALC1 30 m x 0.53 mr	n, 3 µm film thickness			
Temp P	rogram:	40°C (12 min) to 220°C at 40°C/min (5.5 min)				
Carrier	Gas:	Helium				
Flow R	ate:	2.0 mL/min				
Detecto	r Heater Temp:	250°C				
Injector	r:	Headspace Sampler				
HS Ove	en Temp:	60°C				
Vial Eq	uilibration:	10 minutes				
Data File Name:		S:\GC\GC-HS11\2012\0712\Y0709234.D				
Operator:		RPC				
Instrun	ient:	GC#11				
Sample	Name:	AV12066				
Acquire	ed:	July 11, 2012 12:13 PM				
Peak	Compound	Area	Weight %			
1	Methanol	219.03149	1.21			
2	Isopropylamine	11.26934	0.01			
3	Hexanes	31.51361	BQL			
4	NMP	NA	NA			
Total			1.22			

BQL - Below Quantitation Limit

ICP Analysis

Element	Result	Element	Result	Etement	Result	Element	Result	
∧g	4.3 ppm	Eu	< 0.1 ppm	Мо	< 0.1 ppm	Se	0.2 ppm	Zn 9.4 ppm
AI	1.9 ppm	Fe	8.9 ppm	Na	0.16 %	SI	491.5 ppm	Zr < 0.1 ppm
As	< 0.1 ppm	Ga	< D.1 ppm	NO	< 0.1 ppm	Sm	< 0.1 ppm	
Au	< 0.1 ppm	Gđ	< 0.1 ppm	Nd	< 0.1 ppm	Sn	0.2 ppm	
в	0.6 ppm	Ge	< D.tppm	NI	0.2 ppm	Sr	< 0.1 ppm	
Ba	0.5 ppm	Hf	< D.1 ppm	P	6.3 ppm	Та	< 0.1 ppm	
8e	< 0.1 ppm	Hg	N/A	Pb	< 0.1 ppm	To	< 0.1 ppm	
BI	< 0.1 ppm	Ho	< 0.1 ppm	Pđ	< 0.1 ppm	Th	< 0.1 ppm	
Ca	36.9 ppm	len 🛛	< D.1 ppm	Pr	< 0.1 ppm	TI	< 0.1 ppm	
Cd	< 0.1 ppm	ir	< 0.1 ppm	Pt	< 0.1 ppm	TI	< 0.1 ppm	
Ce	< 0.1 ppm	к	0.4 ppm	Rb	< 0.1 ppm	Tm	< 0.1 ppm	
CO	< 0.1 ppm	La	< 0.1 ppm	Re	< 0.1 ppm	Ų	< 0.1 ppm	
CT	4.1 ppm	L	< 0.1 ppm	Rh	< 0.1 ppm	۷	< 0.1 ppm	
Cu	0.9 ppm	Lu	< 0.1 ppm	Ru	< 0.1 ppm	W	< 0.1 ppm	
Dy	< 0.1 ppm	Mg	< 0.1 ppm	Sb	< 0.1 ppm	Y	< 0.1 ppm	
Er 🛛	< 0.1 ppm	Mn	0.1 ppm	Sc	0.4 ppm	Yb	< 0.1 ppm	

Page | 31

Spectral and Physical Data (cont.)

CSQ-15208 AV12066 Revision 0 Page 9 of 9

Spectral and Physical Data (cont.)

Thermogravimetric Analysis

Figure. 10. Certificate of analysis (β-Santalol)

CSQ-15209 AV12136 Revision 0 Page 1 of 9

150 GUIDE 34 150/IEC 17025 190 13485

ISD 9001

Certificate of Analysis

cis-\beta-Santalol

(27)-2-methyl-5-f(15,2R,4R)-2-methyl-3-ouethylenehicyclaf2.2.1]hept-2-j1]peut-2-en-1-ol

Reference Number:	CSQ-15109	
Lot Number:	AV12136	- / ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Retest Date:	June 2013	$\langle \times \vee \vee \rangle$
CA5 Number:	77-42-9	Y rais
Chemical Formula:	CtsH2tO	H DH
Molecular Weight:	220.35	ZH [*]
Chromategraphic Purity:	93.2%	
Parity Factor 1:	91.3%	
Storage:	Refrigerate.	
Mandling:	As specified in the manufacturer MSDS.	
Intended Use:	For R&D, analytical purposes only.	

¹ Purity Encror = (300 - wr% residual solvent - wr% residual water) × Chroniating applic Purity/100.

Spectral and Physical Data

Analytical Test	Method	Results
Арреаталов	Viyaal Inspection	Clear oil
Caracturog aphie Parity by OCFTD Analysis	SP10-0101	93.2% ²
Identity by LC/MS Analysis	SP10-0107	Consistent with Structure
Identity by FTIR Analysis	SP10-0108	Consistent with Structure
Identity by 'H-NMR Analysis	USP <761%, SP10-0116	Consistent with Structure
Identity by ¹⁵ C-NMR Analysis	USP <761>, SP10-0116	Consistent with Structure
Identity by 2D-NMR Analysis	USP <7615, SP10-0116	Consistant with Structure

* Purity video is the avorage of two independent analysics.

Cerilliant certifies the analyses detailed in this certificate are true and accurate. Retest date assigned at the request of the Customer. Cerilliant has not collected stability and makes no claims or warranty regarding shell life or stability of material.

Authorized Signatore:

Lara Sparks, Quality Assurance Director

July 16, 2012

Date

CSQ-15209 AV12136 Revision 0 Page 2 of 9

Spectral and Physical Data (cont.)

Analytical Test	Method		Results		
Residual Solvent Analysis by GC/FID Headspace	AM1087 ³		1.63%		
Residual Water Analysis by Karl Fischer Coulometry	USP <921>, SP10-0103		0.26%		
Specific Rotation	SP10-0133		$[\alpha]^{20} {}_{\rm D} = -95.238^{\circ}$		
Elemental Analysis			Calculated	Analyzed	
	SD10 0117	C	81.76%	80.96%	
	SF10-0117	Н	10.98%	10.68%	
		0	7.26%	7.06%	
Inorganic Content by ICP	Outsourced	Refer to results on page 7			
Thermogravimetric Analysis	SP10-0136		3.92%		
Refractive Index Analysis	Outsourced		1.5012 at 25 °C		

³ Validated analytical method

CSQ-15209 AV12136 Revision 0 Page 3 of 9

Spectral and Physical Data (cont.)

Peak #	Ret Time	Area	Height	Area %	Peak #	Ret Time	Area	Height	Area %
1	4.66	0.11	0.08	0.00	15	12.95	142.87	10.13	0.76
2	5.85	0.45	0.15	0.00	16	13.27	76.05	8.14	0.40
3	8.31	1.78	0.44	0.01	17	13.43	82.70	5.69	0.44
4	8.53	2.11	0.51	0.01	18	13.93	27.22	1.71	0.14
5	9.23	1.03	0.25	0.01	19	14.61	1.95	0.20	0.01
6	9.38	2.02	0.43	0.01	20	15.26	1.45	0.21	0.01
7	9.63	1.02	0.21	0.01	21	16.48	2.09	0.27	0.01
8	9.97	1.12	0.26	0.01	22	18.21	0.69	0.07	0.00
9	10.13	5.24	0.82	0.03	23	18.60	0.53	0.06	0.00
10	11.12	2.04	0.38	0.01	24	21.11	1.06	0.11	0.01
11	11.29	11.78	2.06	0.06	25	25.51	0.43	0.04	0.00
12	11.63	442.24	78.39	2.35	26	32.61	0.85	0.19	0.00
13	12.06	428.62	71.14	2.27	27	34.30	6.49	1.88	0.03
14	12.45	17599.20	2846.98	93.40	28	36.94	0.43	0.09	0.00

CSQ-15209 AV12136 Revision 0 Page 4 of 9

Spectral and Physical Data (cont.)

Identity by FTIR Analysis

CSQ-15209 AV12136 Revision 0 Page 5 of 9

Spectral and Physical Data (cont.)

Spectral and Physical Data (cont.)

Page | 39

CSQ-15209 AV12136 Revision 0 Page 7 of 9

Spectral and Physical Data (cont.)

Residual Solvent Analysis by GC/FID Headspace

Cotumi	n:	DB-ALC1 30 m x 0.53 mi	n, 3 µm film thickness			
Cemp Program:		40°C (12 min) to 220°C at 40°C/min (5.5 min)				
Carrie	· Gas:	Helium				
Now Rate:		2.0 mL/min				
)etecto	r Heater Temp:	250°C Headspace Sampler				
njecto	r:					
IS Oven Temp: /ial Equilibration:		60°C 10 minutes				
Operat	ata File Name: perator: strument: .mple Name: .cquired: .cak Compound	BD GC#11				
nstrun						
ample Name:		AV12136				
Acquir	ed:	July 11, 2012 11:15 AM				
Peak	Compound	Area	Weight %			
	Isopropylamine	19.82406	0.01			
1	Ethyl ether	37.21335	BQL			
1	Hexanes	11448.65283	1.60			
Ļ '	Ethyl acetate	15.53636	0.03			
i.	Unknown # 1	65.3055	BQL			
5	Unknown # 2	31.47961	BQL			
7	NMP	NA	NA			
Fotal			1.63			

BQL - Below Quantitation Limit

ICP Analysis

Element	Result	Element	Recult	Element	Result	Element	Rasult	
Ag	0.6 ppm	Eu	< 0.1 ppm	M-O	< 0.1 ppm	se	O_1 ppm	Zn 11.3 ppm
AJ	2.3 ppm	Fe	40.2 ppm	Na	774.1 ppm	S I	310_0 ppm	Zr ∝0.ippm
As	< 0.1 ppm	Ga	≈ 0.1 ρ ρm	NID	< 0.1 ppm	Sm	« 0.1 ppm	
Au	< 0.1 ppm	Gđ	< 0.1 ppm	Nd	< 0.1 ppm	sn	0.3 ppm	
8	0.9 ppm	Ge	< 0.1 ppm	NI	0.1 ppm	Sr	< 0.1 ppm	
ба	0.6 ppm	Hr	< 0.1 ppm	Ρ	17.6 ppm	Та	< 0.1 ppm	
ве	< 0.1 ppm	Hg	NGA.	Pb	< 0.1 ppm	Tb	« 0.1 ppm	
BI	< 0.1 ppm	Ho	< 0.1 ppm	Pd	« 0.1 ppm	Th	< 0.1 ppm	
Ca	16.0 ppm	In	< 0.1 ppm	Pr	< 0_1 ppm	TI	0.3 ppm	
Cd	- 0.1 ppm	lır.	• 0.1 ppm	Pt	- 0.1 ppm	. F F	= 0. t ppm	
Ce	< 0.1 ppm	ĸ	9.9 ppm	RID	< 0.1 ppm	Tm	< 0.1 ppm	
Co	< 0.1 ppm	La	< 0.1 ppm	Re	« 0_1 ppm	U	< 0.1 ppm	
Cr	2.0 ppm	L	< 0.1 ppm	Rih	« 0., 1 p.pm	V	< 0.1 ppm	
Cu	1.2 ppm	Lu	< 0.1 ppm	Ru	< 0.1 ppm	W	< 0.1 ppm	
Dy	< 0.1 ppm	Mg	< 0.1 ppm	Sb	< 0.1 ppm	Y	< 0.1 ppm	
Er	< 0.1 ppm	Mn	< 0.1 ppm	Sc	0.3 ppm	YD	< 0.1 ppm	

Spectral and Physical Data (cont.)

P a g CSQ115209 AV12136 Revision 0 Page 9 of 9

Spectral and Physical Data (cont.)

Thermogravimetric Analysis

