Supplementary Information

Design and Synthesis of novel N-substituted perylene diimide based low band gap polymers for organic photovoltaic application

Savita Meena,^a Tauheed Mohammad,^b Viresh Dutta^b and Josemon Jacob^{a*}

^aDepartment of Material Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India ^bPhotovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India *Corresponding author. Tel.: +91-11-26591425 E-mail addresses: jacob@polymers.iitd.ac.in

Contents

Synthetic procedure for monomer M2	
Synthetic procedure for monomer M4	
Synthesis of M2 and M4	Scheme S1
¹ H and ¹³ C NMR spectra of M1	Fig. S1-S2
MALDI-TOF MS spectrum of M1	Fig. S3
¹ H and ¹³ C NMR spectra of M2 and M4	Fig. S4-S7
¹ H NMR spectra of polymers P1-P3	Fig. S8-S10
TGA graph of polymers P1-P3	Fig. S11
AFM height and phase images of P1:P3HT, P2:P3HT and	
P3: P3HT blend films in 1.5:1 and 2:1 weight ratios	Fig. 12

1. Synthesis 2,2'-(9,9-Dioctyl-9H-fluoren-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2of dioxaborolane) (M2). Bromination of 1 (2.0 g, 12.03 mmol) in presence of bromine (1.48 mL, 27.67 mmol; added dropwise at 0 °C) with 10 mL of chloroform at room temperature for overnight stirring in dark was resulted in dibromo fluorene. This was alkylated with n-octyl bromide (5.36 mL, 30.0 mmol) in DMSO (40 mL) using tetrabutylammonium hydroxide (0.09 g) and KOH (5.49 g dissolved in 5.5 mL of distilled water) at 80 °C for 72 h yielded in 2,7-dibromo-9,9-dioctyl-9H-fluorene 5 (5.26 g, 80%). A mixture of 5 (2.0 g, 3.64 mmol), bis(pinacolato)diboron (2.14 g, 8.40 mmol), potassium acetate (2.14 g, 21.84 mmol) and Pd(dppf)Cl₂ (0.05 g, 0.06 mmol) were dissolved in dry 1,4-dioxane (20 mL, 3.64 mmol) under N₂ atmosphere for 36 h at 105 °C with continuous stirring. The reaction was monitored using TLC with 2% ethyl acetate in hexane. The reaction was cooled to room temperature and the crude product was extracted with ethyl acetate, washed with 2×30 mL of distilled water and dried over anhydrous Na₂SO₄. The solvent was evaporated and residue was purified using column chromatography over silica gel with 3.5% ethyl acetate in hexane as the eluent to isolate M2 as a creamy white solid. Yield: 1.71 g, 70%. Anal. Calc. for C₄₁H₆₄B₂O₄: C, 76.64%; H, 10.04%. Found: C, 76.55%; H, 9.96%. ¹H NMR (400.13 MHz, CDCl₃, 25 °C vs TMS) δ : 7.81(d, 2H, J = 7.6 Hz), 7.75(s, 2H), 7.72(d, 2H, J = 7.6 Hz), 2.00(t, 4H, J = 6.8 Hz), 1.39(s, 24H), 1.18-1.01(m, 20H), 0.81(t, 6H, J = 7.2 Hz), 0.55(m, 20H), 0.81(t, 6H, J = 7.2 Hz), 0.814H). ¹³C NMR (100.61 MHz, CDCl₃, 25 °C vs TMS) δ: 150.4, 143.8, 133.6, 128.8, 119.3, 83.6, 55.1, 40.0, 31.7, 29.8, 29.2, 29.1, 24.9, 23.5, 22.5, 14.0.

2. Synthesis of 4,7-bis(4-octylthiophen-2-yl)benzo[c]-1,2,5-thiadiazole (M4).

7 (1.0 g, 3.40 mmol) and **6** (3.29 g, 10.20 mmol) were dissolved in a mixture of toluene and THF under N₂ atmosphere followed by the addition of sodium carbonate (1.08 g dissolved in 2 mL of distilled water) and tetrabutylammonium hydroxide (0.1 g). After purging the reaction mixture with N₂ for another 20 minutes, Pd(PPh₃)₄ (0.18 g, 0.16 mmol) was added. The reaction was carried out for 24 h at 110 °C. The reaction was monitored using TLC with 2% ethyl acetate in hexane. The reaction was cooled to room temperature and the crude product was extracted with chloroform, washed with 30 mL of distilled water and dried over anhydrous Na₂SO₄. The solvent was evaporated and residue was purified using column chromatography over silica gel with 2.5% ethyl acetate in hexane as the eluent to obtain **M4** as a bright orange solid. Yield: 1.43 g, 80%. Anal. Calc. for C₃₀H₄₀N₂S₃: C, 68.65%; H, 7.68%; N, 5.34%. Found: C, 68.56%; H, 7.59%; N, 5.25%. ¹H NMR (400.13 MHz, CDCl₃, 25 °C *vs* TMS) δ : 7.97(s, 2H), 7.80(s, 2H), 7.04(s, 2H), 2.69(t, 4H, *J* = 7.6 Hz), 1.71(quint, 4H, *J* = 7.6 Hz), 1.41-1.29(m, 20H), 0.89(t, 6H, *J* = 6.9 Hz). ¹³C NMR (100.61 MHz, CDCl₃, 25 °C *vs* TMS) δ : 152.4, 144.2, 138.9, 128.9, 125.8, 125.3, 121.4, 31.8, 30.6, 30.4, 29.4, 29.3, 29.2, 22.6, 14.1.

Scheme S1 Synthesis of Monomers M2 and M4.

Fig. S1 ¹H NMR spectrum of M1

Fig. S2 ¹³C NMR spectrum of M1

Fig. S3 MALDI-TOF MS spectrum of M1

Fig. S4 ¹H NMR spectrum of M2

Fig. S5 ¹³C NMR spectrum of M2

Fig. S6 ¹H NMR spectrum of M4

Fig. S7 ¹³C NMR spectrum of M4

Fig. S8 ¹H NMR spectrum of P1

Fig. S9 ¹H NMR spectrum of P2

Fig. S10 ¹H NMR spectrum of P3

Fig.S11 TGA Graph for polymers P1-P3

Fig. S12 AFM topographic (left) and phase (right) images of **P1**:P3HT, **P2**:P3HT and **P3**:P3HT blend films.