Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose

Keng-Ku Liu ^a, Qisheng Jiang ^a, Clayton Kacica ^b, Hamed Gholami Derami ^a, Pratim Biswas ^{b, *} and Srikanth Singamaneni ^{a, *}

* Corresponding Authors

^{a.} Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, Missouri 63130, USA

E-mail: <u>singamaneni@wustl.edu</u>

^{b.} Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St Louis, Missouri 63130, USA

E-mail: pbiswas@wustl.edu

Figure S1. (a) AFM image of GO on a silicon substrate. (b) Raman spectrum of GO.

Figure S2. Electrical conductivity of SnO₂/rGO/BNC electrode with different SnO₂ concentrations.

Figure S3. Mass specific capacitance of the PEDOT:PSS/SnO₂/rGO/BNC supercapacitor device at various current densities.

Figure S4. CV curves of the supercapacitor under bending at the scan rate of 100 mV/s.