Design of nanostructured hybrid materials: twin polymerization of urethanebased twin prepolymer

D. Uhlig^a, S. Spange^a, A. Seifert^a, K. Nagel^a, S. Anders^b, L. Kroll^b, R. Stoll^c, F. Thielbeer^d, P. Müller^d and K. Schreiter^{*a}

Supporting information

Preparation of polyurethane twin-prepolymer 4a:

modified PTMEG-MDI-prepolymer 4a

Scheme S1: General reaction scheme for the preparation of twin prepolymer **4a** by end-capping of the isocyanate containing prepolymer **3a**. The reaction can be performed in solution or in situ directly after the preparation of **3a**.

In a three-necked flask with dropping funnel, internal thermometer and mechanical stirrer, 10.02 g (40.0 mmol) diphenylmethan-4,4'-diisocyanate (MDI) are placed and tempered at 50 °C. 18.0 g (18.0 mmol) polytetramethylene ether glycol (PTMEG; average molecular weight 1000 g/mol) were added to the molten MDI within 15 minutes. The reaction mixture was heated to 98 °C for 2 h. The dropping funnel was replaced by a septum. 9.88 g 2-(3-Amino-n-propyl)-2-methy-4*H*-1,3,2-benzodioxasilin (**2**) were slowly added through the septum to the prepolymer at 70 °C. The temperature was kept under 100 °C during the addition. Under minimized stirring rate the reaction mixture was stirred for 30 minutes at 70 °C.

¹H NMR (CDCl₃): δ [ppm] = 0.23 (s, 6H, Si-C<u>H₃</u>), 0.70 (m, 4H, Si-C<u>H₂-</u>), 1.46–1.73 (m (broad), O-CH₂-C<u>H₂-</u>C<u>H₂-</u>CH₂-O- (polymer); Si-CH₂-C<u>H₂-</u>), 3.10 (m, 4H, C<u>H₂-</u>NHCONH), 3.39 (s (broad), O-C<u>H₂-</u>CH₂- CH₂-C<u>H₂-</u>O- (polymer)), 3.85 (s, 4H, Ph-C<u>H₂-</u>Ph), 4.14 (m, 4H, NHCO-O-C<u>H₂-</u>), 4.87 (m, 4H, C<u>H₂-</u>O-Si-), 6.80 (m, Ar-<u>H</u>). ¹³C {¹H} NMR (CDCl₃): δ [ppm] = -2.7 (Si-<u>C</u>H₃), 12.6 (<u>C</u>H₂-Si), 23.2 (<u>C</u>H₂-CH₂-CH₂-Si), 26.0/26.3/26.6 (-O-CH₂-<u>C</u>H₂-<u>C</u>H₂-CH₂-O- (polymer)), 40.0 (Ph-<u>C</u>H₂-Ph), 42.2 (-NHCONH-<u>C</u>H₂-), 63.8 (<u>C</u>H₂-O-Si), 64.9 (NHCO-O-<u>C</u>H₂-), 70.5 (-O-<u>C</u>H₂-CH₂-CH₂-CH₂-O- (polymer)), 119.3 (Ar-<u>C</u>), 120.0 (Ar-<u>C</u>), 121.2 (Ar-<u>C</u>), 126.3 (Ar-<u>C</u>), 127.0 (Ar-<u>C</u>), 129.1 (Ar-<u>C</u>), 129.5 (Ar-<u>C</u>), 136.2 (Ar-<u>C</u>), 153.1 (CH-<u>C</u>-O-Si), 154.0 (NH<u>C</u>O-O-), 156.4 (-NH<u>C</u>ONH-). ²⁹Si NMR (CDCl₃): δ [ppm] = 3.05 (D₀).

Preparation of polyurethane twin prepolymer 4b:

The procedure described above was applied for the preparation and modification of **3b**. Following quantities were used:

- 10.46 g MDI (41.8 mmol)
- 19.0 g polypropylene ether glycol (PPG; average molecular weight 1000 g/mol)
- 9.65 g **2**

¹H NMR (CDCl₃): δ [ppm] = 0.24 (s, 6H, Si-C<u>H</u>₃), 0.71 (m, 4H, Si-C<u>H</u>₂-), 1.11 (s, O-CH₂-CH(C<u>H</u>₃)-O-, polyol), 1.55 (m, 4H, Si-CH₂-C<u>H</u>₂-), 3.11 (m, 4H, C<u>H</u>₂-NHCONH-), 3.38–3.53 (O-C<u>H</u>₂-C<u>H</u>(CH₃)-O-, polyol), 4.85 (m, 4H, C<u>H</u>₂-O-Si-), 6.83–7.38 (Ar-<u>H</u>). ¹³C {¹H} NMR (CDCl₃): δ [ppm] = -3.0 (Si-<u>C</u>H₃), 12.42 (<u>C</u>H₂-Si), 17.2 (-CH-<u>C</u>H₃), 23.1 (<u>C</u>H₂-CH₂-Si), 40.5 (Ph-<u>C</u>H₂-Ph), 42.1 (-NHCONH-<u>C</u>H₂-), 63.8 (<u>C</u>H₂-O-Si), 64.0 (NHCO-O-<u>C</u>H₂-), 71.7–75.5 (-O-<u>C</u>H(CH₃)-<u>C</u>H₂-O-), 119.1 (Ar-<u>C</u>), 119.9 (Ar-<u>C</u>), 120.9 (Ar-<u>C</u>), 126.1 (Ar-<u>C</u>), 126.9 (Ar-<u>C</u>), 128.8 (Ar-<u>C</u>), 129.2, 135.4, 136.1, 137.2, 153.0/153.4 (NH<u>C</u>O-O-), 156.4/156.5 (-NH<u>C</u>ONH-)²⁹Si NMR (CDCl₃): δ [ppm] = 2.97 (D₀).

Preparation of polyurethane twin-prepolymer 4c:

In a three-necked flask with dropping funnel, internal thermometer and mechanical stirrer, 4.94 g (22.23 mmol) isophoronediisocyanate (IPDI) are placed and tempered at 50 °C. 10.71 g (10.71 mmol) PTMEG were added to the diisocyanate within 5 minutes. After complete addition of the polyol, 0.01 mL dibutyltin dilaurate (Merck) was added to the reaction mixture and a slight temperature increase was observed (65 °C). After the reaction mixture cooled down to 50 °C, the reaction mixture was heated to 98 °C for 2 h. The dropping funnel was replaced by a septum. 5.14 g (23.05 mmol) **2** were slowly added with a syringe through the septum to the prepolymer at 70 °C. The temperature was kept under 100 °C during the addition. Under minimized stirring rate the reaction mixture was stirred for 30 minutes at 70 °C.

Scheme S2: Simplified reaction scheme for the preparation of the prepolymer 4c. The prepolymer 3c, and thus the prepolymer 4c principally consists of different possible constitutional isomers (illustrated in structures 3c_1 – 3c_3). The different *cis*- and *trans*-isomers of the cyclohexyl-increments are not considered in this scheme.

¹H NMR (CDCl₃): δ [ppm] = 0.23 (s, 6H, Si-C<u>H₃</u>), 0.70 (m, 4H, Si-C<u>H₂</u>-),0.84 (C<u>H₃</u> IPDI), 0.95/0.97 (C<u>H₃</u> IPDI) 1.56 (m (broad), O-CH₂-C<u>H₂</u>- C<u>H₂</u>-CH₂-O- (polymer); Si-CH₂-C<u>H₂</u>-), 2.82 (2H, -C<u>H</u>NH-), 3.07 (m, 4H, C<u>H₂</u>-NHCONH), 3.35 (s (broad), O-C<u>H₂</u>-CH₂- CH₂-CH₂-O-(polymer)), 3.97 (m, 4H, NHCO-O-C<u>H₂</u>-), 4.84 (m, 4H, C<u>H₂</u>-O-Si-), 6.82 (m, Ar-<u>H</u>), 7.08 (m, Ar-<u>H</u>). ¹³C {¹H} NMR (CDCl₃): δ [ppm] = -3.2 (Si-<u>C</u>H₃), 12.0 (<u>C</u>H₂-Si), 23.2 (<u>C</u>H₂-CH₂-Si), 26.1 (-O-CH₂-<u>C</u>H₂-CH₂-O- (polymer)), 42.1 (-NHCONH-<u>C</u>H₂-), 53.6, 63.4 (<u>C</u>H₂-O-Si), 64.0 (NHCO-O-<u>C</u>H₂-), 70.1 (-O-<u>C</u>H₂-CH₂-CH₂-O- (polymer)), 119.0 (Ar-<u>C</u>), 118.3 (Ar-<u>C</u>), 120.8 (Ar-<u>C</u>), 125.9 (Ar-<u>C</u>), 126.7 (Ar-<u>C</u>), 128.7 (Ar-<u>C</u>), 152.9/156.0 (NH<u>C</u>O-O-), 158.9 (-NH<u>C</u>ONH-). ²⁹Si NMR (CDCl₃): δ [ppm] = 2.89 (D₀).

ATR-FTIR-spectra:

Figure S1: ATR-FTIR-spectra of the components for the prepolymer preparation (**a**: PTMEG; **b**: MDI), the resulting prepolymer (**3a**) and the product **4a**. The characteristic signal of the asymmetric NCO-stretching vibration at around 2300 cm⁻¹ vanishes due to the complete reaction with **2** between spectrum **c** and **d**.

Figure S2: ATR-FTIR-spectra of the corresponding educts, as well as a sample of the reaction mixture (PPG-MDI-prepolymer **3b**) and the resulting twin prepolymer **4b**.

Figure S3: ATR-FTIR-spectra of the corresponding educts, as well as a sample of the reaction mixture (IPDI-PTMEG-prepolymer **3c**) and the resulting twin prepolymer **4c**.

SEC-measurements of 4a and 4b:

Prepolymer 4a:

Figure S4: SEC-traces of the different stages of the in situ-preparation of twin prepolymer **4a**. The increase of the mass can be detected. Low molecular by-products are present due to the required excess of diisocyanate for the formation of the prepolymer.

Sample	Signal	M _n	PDI
PTMEG (1000 g/mol)	I	1550	1.6
	l I	3370	1.7
3a	II	530	1.03
	III	184	1.03
4a	l I	4710	1.9
	II	860	1.06
	III	180	1.02

Signal III is assigned as MDI (MW 250.26 g/mol). Signal II can be interpreted as MDI-dimer which formed through hydrolysis of MDI and subsequent reaction with MDI. Signal II can be interpreted as adduct of **2** and MDI (2n **2** and n MDI 695.28 g/mol). Signal III can be assigned as unreacted MDI or **2**. The SEC-trace does not give information about the quantitative amount of those by-products. As no free isocyanate can be detected by ATR-FTIR-measurement, the amount of unreacted MDI is comparatively low (less than 1%).

Prepolymer 4b:

Figure S5: SEC-traces of PPG, PPG-MDI-prepolymer 3b and 4b.

Table S2: Determined SEC-values of PPG, PPG-MDI-prepolymer **3b** and **4b**.

Sample	Signal	M _n PDI		
PPG (1000 g/mol)	I	1480	1.06	
26		5310	1.52	
30	*	Outside the calibration range		
	I	5160	2.26	
4b	I	1590	1.01	
		880	1.04	

Polymerizations:

STP of 4a with 1:

Thermal induced STP of modified prepolymer 4a with 2,2`-spirobi[4H-1,3,2-benzodioxasilin] (1):

Example with a molar ratio of **4a** : **1** of **85** : **15**. The reaction temperature was determined by DSC-measurement, whereas attempts with different reaction temperatures were also made.

In a 10 mL PTFE-wide-neck-flask with screw-cap and magnetic stirrer 1.14 g (0.58 mmol) of **4a** and 0.028 g (0.10 mmol) **1** are placed under argon. Under stirring, the flask was heated to 125 °C for 0.5 h. The magnetic stirrer was removed out of the slightly yellow reaction mixture. The reaction-flask was heated to 170 °C for 2 h. The obtained material were cut into small pieces with a scalpel for purification by extraction with dichloromethane for 48 h. The extracted material was dried in a vacuum oven at 40 °C to a constant mass.

Table S3: Parameters for the polymerization of mixtures consisting of equimolar amounts **1** and **4a** at different reaction temperatures. Every sample was polymerized for 2 h. The calculated amount of silica for the equimolar mixture is 8.1 wt%.

Sample	т [°С]	t [h]	extr. content [wt%]	silica content [wt%] (TGA)	
HM5a_170	170	2	47	11	
HM5a_190	190	2	47	11	
HM5a_210	210	2	35	9	
HM5a_230	230	2	36	11	

STP of 4a with 1 (varying monomer amounts):

Table S4: Monomer amounts, extractable contents, silica content (TGA) and images of the corresponding hybrid materials.

F 1	Ratio . – 4a	Name	Extractable content [wt%]	Silica [wt%] (TGA, extracted material)	Silica [wt%] (calculated)	
95	5	HM5a_05	21	21	18	

85	15	HM5a_15	33	19	13	
50	50	HM5a_50	47	11	8	
15	85	HM5a_85	25	6	7	
0	100	HM5a_100	14	6	6	

 Table S5: Polymerization of mixtures consisting of equimolar amounts 1 and 4b at different temperatures for a time of 2 h.

Name	т [°С]	extr. content [wt%]	silica content [wt%] (TGA)	
HM5b_170	170	84	_	TSCHNISCHE DMILVERSTYD CHEM-USIZ
HM5b_190	190	49	11	
HM5b_210	210	33	12	uluíntandimtur
HM5b_230	230	45	9	und anothermuthat

Table S6: Extractable content for the samples with different monomer amounts of **1** and **4b** prepared at 190 °C for 2 h. The calculated silica content is 8.1 wt%. **4b** didn't show s notable polymerization behavior at those conditions (sample **HM5b_100**). Therefore, **4b** was polymerized at 200 °C for 2 h (Sample **HM5b_100_200**).

R 1	tatio : 4b	Name	Extractable content [wt%]	Silica (TGA, extracted material) [wt%]	Silica (calculated) [wt%]	
85	15	HM5b_15	31	18	13	Improvement
50	50	HM5b_50	49	11	8	
15	85	HM5b_85	41	6	7	
0	100	HM5b_100	85	4	6	
0	100	HM5b_100_200	52	5	6	

Polymerization of 4c:

The procedure for the polymerization were kept consistent to the attempts described above. **4c** was polymerized alone at 170 °C for 2 h.

Solid-state-NMR investigations of the obtained, extracted hybrid materials:

Figure S6: Solid-state-NMR spectra of the samples prepared with equimolar monomer amounts (prepolymer **4a** with **1**) at varied reaction conditions: (a) ¹³C-{¹H}-CP-MAS (Number of scans: HM5a_170 14077; HM5a_190 3799; HM5a_210 15568; HM5a_230 25700). (b) ²⁹Si-{¹H}-CP-MAS-NMR (Number of scans: HM5a_170 62126; HM5a_190 10054; HM5a_210 11505; HM5a_230 9174).

Investigation of the extracts:

SEC:

Figure S7: SEC-traces of the THF-soluble part of the extracts obtained by extraction with dichloromethane for 48 h of the samples HM5a_170-190.

Sample	Signal	M _n	PDI
	I	9500	1.7
HM5a_170	II	810	1.09
	III	218	1.06
	I	8400	1.6
HM5a_190	П	900	1.06
	III	230	1.03
	I	7300	1.6
HM5a_210	П	880	1.04
	III	210	1.09

Figure S8: SEC-traces of the extractable parts of the samples prepared with different monomer ratios.

Table S8: Determined SEC-values.

Sample	Signal	M _n	PDI
HM5a_100	I	9300	1.32

	II	830	1.08
	111	198	1.11
	l I	8400	1.63
HM5a_85	II	790	1.06
	III	220	1.06
	l I	9500	1.7
HM5a_50	II	810	1.09
	III	218	1.08
	l l	6900	1.47
HM5a_15	II	860	1.05
	III	237	1.0
	I	8800	1.30
HM5a_05	II	420	1.01
		245	1.03

¹H-NMR:

Figure S9: ¹H-NMR spectra of the extracts of the samples prepared at different conditions. Characteristic signals due to the polyether polyol-component (around 1.6 ppm and 3.4 ppm) and salicylic alcohol (CH₂-group at 4.8 ppm) identifiable. The extract of the sample prepared at 230 °C showed no signal due to salicylic alcohol at 4.8 ppm.

Figure S10: ¹H-NMR spectra of the extracts of the samples prepared at different monomer amounts. Characteristic signals due to the polyether polyol-component (around 1.6 ppm and 3.4 ppm) and salicylic alcohol (CH₂-group at 4.8 ppm) are identifiable.

Figure S11: ¹H-NMR spectra of the extracts of the materials prepared by base catalyzed STP.

Figure S12: DSC-curves of **4b**, the equimolar mixture of **4b** and **1** and the equimolar mixture with 1.0 wt% DABCO. The onset of the exothermic heat flow indicates the beginning of the polymerization.

Figure S13: DSC-curves of the unextracted samples with equimolar monomer amounts (4a and 1) prepared at different conditions in comparison with the unpolymerized mixture.

Figure S14: TGA-traces of the samples with different monomer amounts polymerized at 170 °C for 2 h.

Figure 15: TGA-traces of the samples with different monomer amounts (4b and 1) polymerized at 190 °C for 2 h (except 5b_100_2 at 200 °C for 2 h).

SEM/EDX-measurement:

Figure S16: SEM- and EDX-images of the samples prepared with different monomer amounts. Explanation of the EDX-coloration: Si-red; Carbon-green; Oxygen-blue; Nitrogen-cyan.

Elemental analysis:

Table 9: Elemental analysis of the extracted hybrid materials prepared from 4a and 1.

Sample	C [%]	H [%]	N [%]	C/N
HM5a_05	58.14	5.63	1.40	41.52
HM5a_15	59.56	6.30	2.63	22.69
HM5a_50	61.78	8.00	4.45	13.88
HM5a_85	64.03	8.59	4.56	14.04
HM5a_100	64.10	8.60	4.20	15.24

 Table 10: Elemental analysis of the extracted hybrid materials prepared from 4b and 1.

Sample	C [%]	H [%]	N [%]	C/N
HM5b_15	57.62	6.30	3.13	18.41
HM5b_50	61.42	7.16	4.64	13.24
HM5b_85	62.36	7.75	5.19	12.00
HM5b_100	63.47	7.64	6.11	10.38
HM5b_100_2	62.10	7.97	5.17	12.01

TG-MS-measurement of an equimolar mixture of 4a and 1:

Figure S17: TG-MS measurement of the equimolar reaction mixture shows the release of water (m/z=18; blue line) with subsequent carbon dioxide release (m/z=44, green line). This result explains the slight foaming of the reaction mixture at the polymerization process.

IR-measurement of different HMs (5a) and their corresponding educts

Figure S18: IR-spectra of the HMs derived from 4a with different monomer amounts as well as their corresponding educts 3a and 4a.