Supporting Information

Al(III)-Responsive "Off-On" Chemosensor Based on Rhodamine Derivative and Its Application in Cell Imaging

Chunwei Yu,^a Li Jian,^a* Yuxiang Ji^a and Jun Zhang^{a,b}*

^a Department of Environmental Sciences, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571199, P. R. China.

^b School of International Education, Hainan Medical University, Haikou 571199, P. R. China.

*Corresponding authors' E-mails: jianli0622@163.com; jun_zh1979@163.com.

Contents

Fig. S1 a) Fluorescence emission spectra of P (10 μ M) to different metal ions (10 μ M) in ethanol-water solution (9:1, v:v, pH5.8, 20 mM HEPES); b) Fluorescence emission spectra of P (10 µM) to different anion ions and ROS or RNS (10 µM) in ethanol-Fig. S2 Fluorescence response of P (10 μ M) to Al³⁺ ions (10 μ M) or to a mixture of the specified anion ions and ROS or RNS (50 μ M) with Al³⁺ ions (10 μ M) in Fig. S3 Benesi-Hildebrand plot of P, assuming 1:1 stoichiometry for association Fig. S10 ¹H NMR spectrum of P \dots 7 Table 1 Performances comparison of turn on fluorescent chemosensors for Al³⁺ ion Cal. 1 Quantum yield of chemosensor P10 Cal. 2 Binding constant of Al³⁺ and chemosensor P10

Fig. S1

Fig. S1 a) Fluorescence emission spectra of **P** (10 μ M) to different metal ions (10 μ M) in ethanolwater solution (9:1, v:v, pH5.8, 20 mM HEPES); b) Fluorescence emission spectra of **P** (10 μ M) to different anion ions and ROS or RNS (10 μ M) in ethanol-water solution (9:1, v:v, pH5.8, 20 mM HEPES).

Fig. S2 Fluorescence response of **P** (10 μ M) to Al³⁺ ions (10 μ M) or to a mixture of the specified anion ions and ROS or RNS (50 μ M) with Al³⁺ ions (10 μ M) in ethanol-water solution (9:1, v:v, pH5.8, 20 mM HEPES).

Fig. S3

Fig. S3 Benesi-Hildebrand plot of P, assuming 1:1 stoichiometry for association between P and Al^{3+} .

Fig. S4 ESI-MS of P-Al³⁺ complex.

Fig. S5 Contrast of FT-IR spectrum between P and P-Al³⁺ complex

Fig. S6

Fig. S6 a) Contrast of ¹H NMR spectrum between **P** and **P**-Al³⁺ complex; b) Contrast of ¹³C NMR spectrum between **P** and **P**-Al³⁺ complex

P+Al³⁺

Fig. S7

Fig. S7 Reversible titration response of **P** to Al^{3+} in ethanol-water solution (9:1, v:v, pH5.8, 20 mM HEPES): (a) **P** (10 μ M); (b) **P** (10 μ M) with Al^{3+} (10 μ M); (c) **P** (10 μ M) with Al^{3+} (10 μ M) and then addition of EDTA (20 μ M); (d) **P** (10 μ M) with Al^{3+} (10 μ M) and EDTA (20 μ M) and then addition of Al^{3+} (30 μ M).

Fig. S8 Confocal fluorescence images of HepG2 cells incubated with **P** (10 μ M) and Hoechst 33342 (1 μ g/mL) for 30 min. Cells loaded with Al³⁺ (10 μ M), then treated with **P** (10 μ M) and Hoechst 33342 (1 μ g/mL) for 30 min. (a) Red channel with **P**; (b) Blue channel with Hoechst 33342; (c) Overlay of images showing fluorescence from Hoechst 33342 (b) and **P** (a).

Fig. S9 ESI-MS of P

17 in DMSO(proton)

Fig. S10 ¹H NMR spectrum of P

Fluorescence	Fluorescence	Reproducibility	LOD	Fluorescence	Fluorescence	Detection media	Cell applications	Binding constant (M ⁻¹) Ref.	Dof
parameter	reagents		(µM)	quantum yield	lifetime				Kel.
$\lambda_{\rm ex}/_{\rm em}$ =418/518 nm	Pyrazoline	Reversible	NA	0.574	NA	H ₂ O-CH ₃ CN (1:1, v/v,	3T3-L1, qualitative analysis	2.13×10^{3}	[17]
	derivative					pH 7.2, 20 mM HEPES)			
$\lambda_{ex}/_{em}$ =445/525 nm	Naphthaldehyde	Reversible	0.001	NA	NA	Ethanol	NA	$2.5 imes 10^3$	[18]
	derivative								
$\lambda_{ex}/_{em} = 350/532 \text{ nm}$	Pyrrolidine	Reversible	NA	NA	NA	CH ₃ CN	NA	0.87× 10 ⁴	[19]
	derivative								
$\lambda_{ex}/_{em}$ =520/587 nm	Rhodamine	Reversible	0.57	0.303	NA	H ₂ O-CH ₃ CN (3:7, v/v,	SiHa cells, qualitative analysis	$1.4 imes 10^4$	[20]
	derivative					pH 7.4, HEPES)			
$\lambda_{ex}/_{em}$ =350/526 nm	Naphthalimide	Reversible	0.34	0.48	NA	H_2O -ethanol (1:1, v/v,	NA	$2.6 imes 10^4$	[21]
	derivative					pH 7.2, Tris-HCl)			
$\lambda_{ex}/_{em}{=}500/582~nm$	Rhodamine	Reversible	0.11	0.51	NA	H_2O -ethanol (1:4, v/v,	NA	7.03×10^{3}	[22]
	derivative					pH 7.2, 20 mM HEPES)			
$\lambda_{ex}/_{em} = 345/490 \text{ nm}$	Benzophenone	Irreversible	0.27	NA	NA	Methanol	NA	NA	[23]
	azine derivative								
λex/em=560/584 nm	Rhodamine	Reversible 0.	0.059	NA	NA	H ₂ O-CH ₃ CN (3:7, v/v,	SiHa cells, qualitative analysis	$6.42 imes 10^4$	[24]
	derivative		0.057			pH 7.4, 1 mM HEPES)			
$\lambda_{ex}/em = 510/580 \text{ nm}$	Rhodamine Reversi derivative			0.45	NA	Ethanol-HaO (9:1 v:/v	HepG2 cells, qualitative and	6.9×10^{4}	This
		Reversible	0.16			nH 5.8 20 mM HEPES			work
						pir 5.0, 20 min rier E0)	quantitative analysis		WUIK

 Table 1 Performances comparison of turn on fluorescent chemosensors for Al³⁺ ion.

Cal. 1: Quantum yield of chemosensor P

The quantum yield (Φ) of the Al³⁺ rhodamine complex denotes the fluorescence quantum yield. It is obtained by comparison of the integrated area of the corrected emission spectrum of the sample with that of a solution of rhodamine in ethanol, which has a quantum yield of 0.89. The quantum yield (Φ) can be calculated from multiple measurements (n = 3) with the following equation, where absorbance can be obtained from the absorption spectra and $\int F$ can be calculated by summation of fluorescence intensity. Consequently, the quantum yield of the Al³⁺-rhodamine complex can be calculated as 0.45.

$$\phi_{sample} = \frac{Abs_{standard}\phi_{standard}\int F_{sample}}{Abs_{sample}\int F_{standard}}$$

Cal. 2 Binding constant of Al³⁺ and chemosensor P

The binding constant was determined according to Benesi-Hildebrand method as follows: When assuming a 1:1 stoichiometry for interaction between chemosensor \mathbf{P} and Al^{3+} , the equilibrium is given by following equation:

$$\mathbf{P} + \mathbf{A}\mathbf{I}^{3+} \xrightarrow{k} \mathbf{P} \bullet \mathbf{A}\mathbf{I}^{3+} (1)$$

The association constant, k, is therefore expressed as:

$$k = \frac{[\mathbf{P} \bullet \mathbf{Al}^{3+}]}{[\mathbf{P}][\mathbf{Al}^{3+}]} = \frac{[\mathbf{P} \bullet \mathbf{Al}^{3+}]}{([\mathbf{P}]_0 - [\mathbf{P} \bullet \mathbf{Al}^{3+}])([\mathbf{Al}^{3+}]_0 - [\mathbf{P} \bullet \mathbf{Al}^{3+}])}$$
(2)

 $[\mathbf{P} \cdot \mathbf{A} \mathbf{I}^{3+}]$, $[\mathbf{P}]$, and $[\mathbf{A} \mathbf{I}^{3+}]$ represent the equilibrium concentrations of the complex, free **P**, and free $\mathbf{A} \mathbf{I}^{3+}$, respectively. $[\mathbf{P}]_0$ and $[\mathbf{A} \mathbf{I}^{3+}]_0$ are the initial concentrations of **P** and $\mathbf{A} \mathbf{I}^{3+}$, respectively. If $[\mathbf{A} \mathbf{I}^{3+}]_0 >> [\mathbf{P} \cdot \mathbf{A} \mathbf{I}^{3+}]$, the Eq. 2 can be simplified as follows:

$$k = \frac{[\mathbf{P} \bullet \mathbf{Al}^{3+}]}{([\mathbf{P}]_0 - [\mathbf{P} \bullet \mathbf{Al}^{3+}])[\mathbf{Al}^{3+}]_0}$$
(3)

Eq. 3 is transformed to:

$$\frac{1}{[\mathbf{P} \bullet \mathbf{Al}^{3+}]} = \frac{1}{k[\mathbf{P}]_0 [\mathbf{Al}^{3+}]_0} + \frac{1}{[\mathbf{P}]_0} \quad (4)$$

Fluorescence intensity is given as follows:

$$F_{0} = k_{0}[P]_{0}(5)$$

$$F = k_{0}[P]_{0} + k_{\infty}[P \bullet Al^{3+}](6)$$

$$F_{\max} = k_{0}[P]_{\max} + k_{\infty}[P \bullet Al^{3+}]_{\max}(7)$$

where, F_0 is the absorbance of **P** without Al³⁺, F is the fluorescence intensity of **P** obtained with Al³⁺, F_{max} is the fluorescence intensity of **P** in the presence of excess amount of Al³⁺. By means of Eqs. 5, 6 and 7, the following equation is obtained:

$$\frac{F_{\max} - F_0}{F - F_0} = \frac{\left[\mathbf{P} \bullet \mathbf{Al}^{3+}\right]_{\max}}{\left[\mathbf{P} \bullet \mathbf{Al}^{3+}\right]}$$
(8)

In the presence of excess amount of Al^{3+} , $[\mathbf{P} \cdot Al^{3+}]_{max}$ is almost equal to $[\mathbf{P}]_0$. The Eq. 8 can therefore be replaced as follows:

$$\frac{F_{\max} - F_0}{F - F_0} = \frac{[P]_0}{[P \bullet Al^{3+}]} (9)$$

Using Eq. 4 and 9, the Benesi-Hildebrand equation is obtained as:

$$\frac{1}{F - F_0} = \frac{1}{K(F_{\text{max}} - F_0)[\text{Al}^{3+}]_0} + \frac{1}{F_{\text{max}} - F_0}$$
(10)

 F_0 is the fluorescence intensity of **P** without Al³⁺, F is the fluorescence intensity of **P** obtained with Al³⁺, F_{max} is the fluorescence intensity of **P** in the presence of excess amount of Al³⁺, K is the binding constant (M⁻¹) and was determined from the slope of the linear plot. Therefore, the binding constant is obtained of $6.9 \times 10^4 \text{ M}^{-1}$.