Electronic Supplementary Information

Synthesis of Multifunctional CuFe₂O₄-Reduced Graphene Oxide Nanocomposite: An Efficient Magnetically Separable Catalyst as well as High Performing Supercapacitor and First-Principles Calculations for its Electronic Structures

Madhurya Chandel, Debabrata Moitra, Priyanka Makkar, Harshit Sinha, Harshdeep Singh Hora, and Narendra Nath Ghosh*

Nano-materials Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, Goa- 403726, India.

Synthesis of Graphene oxide (GO)

Graphene oxide was synthesized using graphite powder as reported by Hummers and Offeman.¹ In this synthesis method, 1g of graphite powder and 0.6g of NaNO₃ were mixed with 35 ml of H₂SO₄ at 0 °C. The mixture was stirred for 6 h, and then 3.8 g of KMnO₄ was added. The temperature was maintained at 35 °C for 8 h for complete oxidation of graphene sheets. After that 60ml of deionized water was added slowly and kept the temperature at 98 °C for 1 h with constant stirring. Then 2 ml of 30% H₂O₂ was added and stirred for 0.5 h. The mixture was centrifuged and washed with 10% HCl and distilled water. The yellowish brown precipitate of graphene oxide was obtained and dried at 60 °C.

Computational details

In case of CuFe₂O₄ a Monkhorst-Pack mesh of k-points $8 \times 8 \times 8$ is used, to sample the Brillouin zone for geometry optimization and for calculating the density of states. The initial superlattice structure of graphene was constructed using a $2 \times 2 \times 1$ super cell with 8 atoms and 15 Å vacuum space at z-axis and optimized using $4 \times 4 \times 1$ Monkhorst-Pack *k* point grid.²⁻³

The density of states was calculated using $8 \times 8 \times 1 \ k$ point grid. In case of CuFe₂O₄.graphene composite, the relaxed structure of CuFe₂O₄ with Fd³m space group and graphene were used for constructing the superlattice structure.⁴

The superlattice was constructed using a 2 layer slab of $CuFe_2O_4$ crystal cleaved along (111) plane with a graphene layer placed 2 Å above the slab. Here, $4 \times 4 \times 1 k$ point grids were used for optimization of structure and density of states calculations respectively.² The sizes of the unit cells of the systems simulated are listed in Table S1.

System	Structural parameters	
CuFe ₂ O ₄ Unit cell	a=b=c=8.369 Å	$\alpha=\beta=\gamma=90^{o}$
Graphene	a=b=4.9 Å; $c=31.1 Å$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
CuFe ₂ O ₄ -slab	a=b=5.91 Å; $c=31.1 Å$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
CuFe ₂ O ₄ -graphene	a= b = 5.56 Å; c = 31.1 Å	$\alpha = \beta = 90^\circ, \gamma = 120^\circ$
Strain on interface	$\epsilon_{11} {=}~ 2.48\%$, $\epsilon_{12} {=}~ 2.33\%$	
	Mean Absolute Strain = 2.09	%

Table S1 The sizes of the unit cells of simulated systems

Details of the input files for geometric optimization of the $CuFe_2O_4$ unit cell, $CuFe_2O_4$ (111) Slab, graphene superlattice and $CuFe_2O_4$ -graphene superlattice

CuFe₂O₄ unit cell

```
&CONTROL
             title = 'Bulk',
         calculation = 'relax',
         restart mode = 'from scratch',
          wf_collect = .true.,
            outdir = '/home/madhuriya/Pure-CuF/Bulk/',
             wfcdir = '/home/madhuriya/Pure-CuF/Bulk/',
          pseudo dir='/opt/apps/quantum espresso/qe-
6.1/pseudo/pslibrary.1.0.0/pbe/PSEUDOPOTENTIALS/',
            prefix = 'pwscf',
           verbosity = 'low',
             nstep = 200,
/
&SYSTEM
             ibrav = 2,
           celldm(1) = 15.8169242979704d0,
              nat = 14,
             ntyp = 3,
            ecutwfc = 30,
            ecutrho = 120,
           input dft = 'pbe',
         occupations = 'smearing',
            degauss = 0.005d0,
```

```
smearing = 'methfessel-paxton',
            nspin = 2,
 starting magnetization(1) = 2.00000e-01,
 starting magnetization(2) = 2.00000e-01,
 starting magnetization(3) = 0.00000e+01,
           vdw corr = 'grimme-d2',
/
&ELECTRONS
      scf must converge = .false.,
           conv thr = 1d-06,
        adaptive thr = .false.
         mixing mode = 'local-TF',
         mixing beta = 0.07d0,
/
&IONS
        ion dynamics = 'bfgs',
ATOMIC SPECIES
 Cu 63.54600 Cu.pbe-dn-rrkjus psl.1.0.0.UPF
 Fe 55.84500 Fe.pbe-spn-rrkjus psl.1.0.0.UPF
  O 15.99940 O.pbe-nl-rrkjus psl.1.0.0.UPF
ATOMIC POSITIONS crystal
 Cu
       0.625000000 0.125000000
                                  0.625000000
 Cu
       0.625000000 0.625000000
                                  0.125000000
 Fe
       0.009095743 -0.009095743 -0.009095743
 Fe
       0.240904257 0.259095743
                                  0.259095743
 Fe
       0.625000000 0.625000000
                                  0.625000000
 Fe
       0.125000000 0.625000000
                                  0.625000000
       0.352246663 0.392577372
  0
                                  0.392577372
  0
```

```
0.365498515 0.400494493
                             0.868508477
                 0.868508477
0
    0.365498515
                             0.400494493
0
    0.862598593
                 0.392577372
                             0.392577372
0
    0.884501485
                 0.849505507
                             0.381491523
0
    0.897753337
                 0.857422628
                             0.857422628
```

```
0
    0.884501485
                 0.381491523
                              0.849505507
```

```
0
    0.387401407
                 0.857422628
                              0.857422628
```

```
K POINTS automatic
```

```
888 000
```

CuFe₂O₄ (111) plane Slab

&CONTROL

title = 'CuF', calculation = 'relax', restart mode = 'restart', wf collect = .true.,

```
outdir = '/home/madhuriya/Pure-CuF/CuF-Slab/',
            wfcdir = '/home/madhuriya/Pure-CuF/CuF-Slab/',
          pseudo dir='/opt/apps/quantum espresso/ge-
6.1/pseudo/pslibrary.1.0.0/pbe/PSEUDOPOTENTIALS/',
            prefix = 'pwscf',
          verbosity = 'high',
&SYSTEM
            ibrav = 0,
          celldm(1) = 11.1842544286d0,
             nat = 28,
             ntyp = 3,
           ecutwfc = 30,
           ecutrho = 240,
          input dft = 'pbe',
         occupations = 'smearing',
           degauss = 0.005d0,
           smearing = 'marzari-vanderbilt',
            nspin = 2,
 starting magnetization(1) = 0.5,
           vdw corr = 'grimme-d2',
&ELECTRONS
         electron maxstep = 500,
         scf must converge = .false.,
           conv thr = 1d-08,
         mixing mode = 'local-TF',
         mixing beta = 0.05d0,
/
&IONS
        ion_dynamics = 'bfgs',
        ion position ='default'
/
CELL PARAMETERS alat
  1.00000000 0.00000000
                              0.000000000
  -0.500000000
                0.866025404
                              0.000000000
  0.00000000 0.00000000
                              2.984697837
ATOMIC SPECIES
 Cu 63.54600 Cu.pbe-spn-rrkjus psl.1.0.0.UPF
 Fe 55.84500 Fe.pbe-spn-rrkjus psl.1.0.0.UPF
  O 15.99940 O.pbe-nl-rrkjus psl.1.0.0.UPF
ATOMIC POSITIONS crystal
      0.825488122 0.674511878
  0
                                  0.064183278
  0
       0.342783272 0.157216728
                                  0.071280193
  0
       0.833083007 0.149084722
                                  0.071946161
  0
       0.350915278 0.666916993
                                  0.071946161
```

Fe	0.173761693	0.326238307	0.105496714
Fe	0.500000000	0.000000000	0.136780442
Fe	0.826238307	0.673761693	0.168064170
Ο	0.649084722	0.333083007	0.201614724
Ο	0.166916993	0.850915278	0.201614724
Ο	0.657216728	0.842783272	0.202280692
Ο	0.174511878	0.325488122	0.209377607
Fe	0.333333333	0.166666667	0.273560885
Cu	0.833333333	0.166666667	0.273560885
Cu	0.333333333	0.666666667	0.273560885
Ο	0.492154789	0.007845211	0.337744162
Ο	0.009449939	0.490550061	0.344841077
Ο	0.017581945	0.000250326	0.345507046
Ο	0.499749674	0.482418055	0.345507046
Fe	0.840428360	0.659571640	0.379057599
Fe	0.166666667	0.333333333	0.410341327
Fe	0.492904973	0.007095027	0.441625055
Ο	0.833583660	0.184248612	0.475175609
Ο	0.315751388	0.666416340	0.475175609
Ο	0.323883394	0.176116606	0.475841577
Ο	0.841178544	0.658821456	0.482938492
Cu	0.000000000	0.000000000	0.547121770
Fe	0.000000000	0.500000000	0.547121770
Cu	0.500000000	0.500000000	0.547121770
K_POI	NTS automatic		
1 1 1	000		

441 000

Graphene Superlattice

```
title = 'GO',
calculation = 'nscf',
restart_mode = 'from_scratch',
wf_collect = .true.,
outdir = '/home/madhuriya/Ag-Ni/GO/',
wfcdir = '/home/madhuriya/Ag-Ni/',
pseudo_dir='/opt/apps/quantum_espresso/qe-
6.1/pseudo/pslibrary.1.0.0/pbe/PSEUDOPOTENTIALS/',
prefix = 'GO',
verbosity = 'high',
/
&SYSTEM
ibrav = 0,
celldm(1) = 9.9333961239d0,
nat = 8,
```

ntyp = 1,ecutwfc = 50,

```
ecutrho = 400,
            nbnd = 50,
         input dft = 'pbe',
        occupations = 'smearing',
          degauss = 0.005d0,
          smearing = 'marzari-vanderbilt',
          vdw corr = 'grimme-d2',
/
&ELECTRONS
          conv thr = 1d-06,
        mixing beta = 0.05d0,
/
CELL PARAMETERS alat
  1.00000000 0.00000000
                            0.000000000
  -0.50000000 0.866025404
                            0.000000000
  0.00000000 0.00000000
                            1.909176510
ATOMIC SPECIES
  C 12.01070 C.pbe-n-rrkjus psl.1.0.0.UPF
ATOMIC POSITIONS crystal
  С
      0.333700887 0.184686245 0.588347888
  С
      0.833828241 0.184740171
                                0.588327913
  С
      0.167059375 0.351339991
                                0.588321870
  С
      0.667076192 0.351300916 0.588327069
  С
      0.333654895 0.684633366 0.588332772
  С
      0.833832636 0.684557864 0.588299815
  С
      0.167079247 0.851343793 0.588302468
  С
      0.667148522 0.851272881 0.588340545
K POINTS automatic
```

441 000

CuFe₂O₄ (111)plane-graphene Superlattice

```
&CONTROL

title = 'Interface',

calculation = 'relax',

restart_mode = 'from_scratch',

outdir = '/home/madhuriya/Pure-CuF/Interface/',

wfcdir = '/home/madhuriya/Pure-CuF/Interface/',

pseudo_dir='/opt/apps/quantum_espresso/qe-

6.1/pseudo/pslibrary.1.0.0/pbe/PSEUDOPOTENTIALS/',

prefix = 'pwscf',

verbosity = 'high',

nstep = 200,

/

&SYSTEM
```

```
ibrav = 0,
          celldm(1) = 10.5217793346d0,
             nat = 36.
             ntyp = 4,
           ecutwfc = 30.
           ecutrho = 240,
          input dft = 'pbe',
         occupations = 'smearing',
           degauss = 0.005d0,
          smearing = 'marzari-vanderbilt',
            nspin = 2,
 starting magnetization(1) = 0.5.
          vdw corr = 'grimme-d2',
/
&ELECTRONS
      scf must converge = .false.,
          conv thr = 1d-08,
         mixing mode = 'local-TF',
         mixing beta = 0.05d0,
/
&IONS
        ion dynamics = 'bfgs'.
        ion positions = 'default',
      trust radius max = 1.2,
/
CELL PARAMETERS alat
  1.00000000 0.00000000
                              0.000000000
  -0.50000000 0.866025404
                              0.000000000
  0.00000000 0.00000000
                             4.975035579
ATOMIC SPECIES
  C 12.01070 C.pbe-n-rrkjus psl.1.0.0.UPF
 Cu 63.54600 Cu.pbe-spn-rrkjus psl.1.0.0.UPF
 Fe 55.84500 Fe.pbe-spn-rrkjus psl.1.0.0.UPF
  O 15.99940 O.pbe-nl-rrkjus psl.1.0.0.UPF
ATOMIC POSITIONS crystal
       0.331757865 0.168242135
  0
                                  0.049842352
  0
       0.836685839 0.172572407
                                  0.053486328
  0
       0.327427593 0.663314161
                                  0.053486328
  0
       0.826645982
                    0.673354018
                                  0.055526283
 Fe
       0.168067552
                    0.331932448
                                  0.065682134
 Fe
       0.497324207 0.002675793
                                  0.075252501
 Fe
       0.825424891
                    0.674575109
                                  0.112409449
  0
       0.661273515
                    0.838726485
                                  0.133984412
  0
       0.638567825
                    0.341624625
                                  0.134217816
  0
       0.158375375
                    0.861432175
                                  0.134217816
  0
       0.172391552 0.327608448
                                  0.138058878
```

Cu	0.832114721	0.169515375	0.172098881
Cu	0.330484625	0.667885279	0.172098881
Fe	0.325477944	0.174522056	0.172831230
0	0.491550179	0.008449821	0.208435883
0	0.019916546	0.480083454	0.219568024
0	0.036091855	0.020681369	0.220910040
0	0.479318631	0.463908145	0.220910040
Fe	0.840700887	0.659299113	0.240915090
Fe	0.170981163	0.329018837	0.261264608
Fe	0.489202082	0.010797918	0.275419305
0	0.836454992	0.156193889	0.300031281
0	0.343806111	0.663545008	0.300031281
0	0.322010332	0.177989668	0.304873837
0	0.848333984	0.651666016	0.312567769
Fe	0.024557333	0.475442667	0.330573325
Cu	0.506237702	0.507847952	0.344659584
Cu	0.992152048	0.993762298	0.344659584
С	0.833763805	0.684619934	0.453741408
С	0.167093236	0.851329636	0.453742499
С	0.167070265	0.351356009	0.453748185
С	0.667085054	0.351297097	0.453748368
С	0.833746390	0.184622583	0.453748939
С	0.333777030	0.684680425	0.453749320
С	0.667110629	0.851297223	0.453751175
С	0.333733586	0.184672319	0.453752573

K_POINTS automatic 441 000

Fig. S1 EDS spectra of synthesized 96CuFe₂O₄-4RGO nanocomposite.

Fig. S2 FT-IR spectra of (a) GO, and (b) 96CuFe₂O₄-4RGO nanocomposite.

Fig. S3 Raman spectra of (a) GO, (b) RGO, and (c) 96CuFe₂O₄-4RGO nanocomposite.

Fig. S4 TGA curve of (a) pure $CuFe_2O_4$, (b) $96CuFe_2O_4-4RGO$, (c) $92CuFe_2O_4-8RGO$ nanocomposite, and (d) GO.

Fig. S5 N_2 adsorption-desorption isotherms and (inset) pore size distribution of synthesized (a) pure CuFe₂O₄ and (b) 96CuFe₂O₄-4RGO nanocomposite.

Fig. S6 Room temperature magnetic hysteresis loops of (a) pure CuFe₂O₄, (b) 96CuFe₂O₄-4RGO.

Fig. S7 The initial structure of (a) $CuFe_2O_4$ unit cell, (b) graphene superlattice, (c) $CuFe_2O_4$ (111) slab, and (d) $CuFe_2O_4$ -graphene superlattice.

Fig. S8 The optimized structure of (a) $CuFe_2O_4$ unit cell, (b) graphene superlattice, (c) $CuFe_2O_4$ (111) slab and (d) $CuFe_2O_4$ -graphene superlattice.

Table S2 Comparison of optimized structural parameter of graphene superlattice with the reported	
values.	

Material	Structural Parameters	Positional Parameters	References
Graphene	a = 1.42 Å -	C(1): 0.1933, 0.1433, 0.8127;	[5]
(P6/mmm		C(2): 0.6933, 0.1433, 0.8126;	
space group)		C(3): 0.3600, 0.3100, 0.8127;	
		C(4): 0.8600, 0.3100, 0.8126;	
		C(5): 0.1933, 0.6433, 0.8126;	
		C(6): 0.6933, 0.6433, 0.8127;	
		C(7): 0.3600, 0.8100, 0.8127;	
		C(8): 0.8600, 0.8100, 0.8127;	
	a = 1.42 Å	-	[6]
	a = 1.42 Å	C(1): 0.1933, 0.1433, 0.8127;	This work
		C(2): 0.6933, 0.1433, 0.8126;	
		C(3): 0.3600, 0.3100, 0.8127;	
		C(4): 0.8600, 0.3100, 0.8126;	
		C(5): 0.1933, 0.6433, 0.8126;	
		C(6): 0.6933, 0.6433, 0.8127;	
		C(7): 0.3600, 0.8100, 0.8127;	
		C(8): 0.8600, 0.8100, 0.8127;	

System	Method of optimization	Structural parameters	Band gap obtained from DFT calculation	References
CuFe ₂ O ₄	DFT	a= b = c =5.777 Å	-	[4]
$(Fd^{3}m)$		$\alpha = \beta = \gamma = 60^{\circ}$		
Cubic				
CuFe ₂ O ₄	DFT+U	a=b=c=5.917 Å	-	[4]
(Fd ³ m)		$\alpha = \beta = \gamma = 60^{\circ}$		
Cubic				
CuFe ₂ O ₄	DFT	a= b = 5.976 Å, c = 5.676 Å		[4]
		$\alpha = \beta = 61.64 \circ \gamma = 57.03 \circ$		
CuFe ₂ O ₄	DFT+U	a= b = 6.059 Å, c = 5.912 Å	1.429 eV (Indirect band	[4]
		$\alpha = \beta = 60.80 \circ \gamma = 57.57^{\circ}$	gap)	
CuFe ₂ O ₄	PBESOL and	a=b=c=8.389 Å	0.603 eV	[7]
$(Fd^{\overline{3}}m)$	GGA+U	$\alpha=\beta=\gamma=90^{o}$		
Cubic				
CuFe ₂ O ₄	GGA+U	a= b = 8.136 Å, c = 8.669 Å	1.2 eV	[8]
CuFe ₂ O ₄	GGA	a=b=c=8.37 Å	-	[9]
Cubic				
CuFe ₂ O ₄	PBE +	a =b= c= 8.369 Å	1.62 eV	This work
(Fd ³ m)	Grimme-D2	$\alpha=\beta=\gamma=90^{o}$	(Majority) and 1.43 eV (Minority)	
Cubic			(winority)	

Table S3 Comparison of the optimized structural parameter and band gap of $CuFe_2O_4$ unit cellwith the reported values obtained by different theoretical calculations.

Material	Structural Parameters	References
CuFe ₂ O ₄	a = 8.37 Å	[10]
Cubic	a = 8.371 Å	[11]
	a = 8.374 Å	[12]
	a = 8.390 Å	[13]
	a = 8.369 Å	This work

Table S4 Comparison of optimized structural parameter of CuFe₂O₄ unit cell with the reported experimental values.

Fig. S9 Electronic band structures of (a) graphene superlattice, (b) $CuFe_2O_4$ unit cell for majority band, (c) $CuFe_2O_4$ unit cell for minority band, (d) $CuFe_2O_4$ -graphene superlattice for spin-up, and (e) $CuFe_2O_4$ -graphene superlattice for spin-down. The Fermi level is referenced to zero energy, as indicated by the dotted line.

Fig. S10 Projected density of states of (a) graphene, (b) $CuFe_2O_4$ superlattice, and (c) $CuFe_2O_4$ graphene superlattice. The Fermi level is referenced to zero energy, as indicated by the dotted line.

Fig. S11 The plot of transformed Kubelka-Munk function versus the energy of light for pure $CuFe_2O_4$.

Table S5 Reaction completion time and the apparent rate constant of reduction of 4nitrophenol when the reaction was catalyzed by pure $CuFe_2O_4$ and different $CuFe_2O_4$ -RGO nanocomposites.

Sr. no.	Composition of the catalyst	Reaction completion	Apparent rate
		time (min)	constant (K_{app}) s ⁻¹
1	Pure CuFe ₂ O ₄	12	5.7 (± 0.3)× 10 ⁻³
2	98 CuFe ₂ O ₄ -2RGO	7	$8.0 (\pm 0.8) \times 10^{-3}$
3	96 CuFe ₂ O ₄ -4RGO	4	$17.2 (\pm 0.6) \times 10^{-3}$
4	94 CuFe ₂ O ₄ -6RGO	5	$10.3 (\pm 2.0) \times 10^{-3}$
5	92 CuFe ₂ O ₄ -8RGO	6	9.8 (± 1.0) × 10 ⁻³

Table S6 Comparison of the catalytic efficiency of $96CuFe_2O_4$ -4RGO with various reportedcatalysts for the reduction reaction of 4-NP in presence of NaBH₄.

Catalyst	Rate Constant	Reference	
	(K _{app})		
Au nanoparticle	9.19×10 ⁻³ s ⁻¹	[14]	
Ag nanoparticle	4.06×10 ⁻³ s ⁻¹	[14]	
Cu nanoparticle	1.5×10 ⁻³ s ⁻¹	[15]	
Ag@SBA-15	1.7×10 ⁻³ s ⁻¹	[16]	
Au ₁ -Cu ₃ /rGO	96×10 ⁻³ s ⁻¹	[17]	

Ag@CoFe ₂ O ₄	19.6×10 ⁻³ s ⁻¹	[18]
Cu@SBA-15	17.3×10 ⁻³ s ⁻¹	[19]
Ag@Fe ₃ O ₄	5.8×10 ⁻³ s ⁻¹	[20]
Fe ₃ O ₄ @SiO ₂ -Ag	7.6×10 ⁻³ s ⁻¹	[21]
Au-Fe ₃ O ₄	10.5×10 ⁻³ s ⁻¹	[22]
Fe ₃ O ₄ /Cu	17.1 ×10 ⁻³ s ⁻¹	[23]
Fe ₃ O ₄ @SiO ₂ -Au MNCs	$14.2 \times 10^{-3} \text{ s}^{-1}$	[24]
Iron Oxide@Ag Core-shell	$14.5 \times 10^{-3} \text{ s}^{-1}$	[25]
Ag@Fe ₃ O ₄ @C Core shell	17.1 ×10 ⁻³ s ⁻¹	[26]
Cu@SBA-15@CoFe ₂ O ₄	$18.3 \times 10^{-3} \text{ s}^{-1}$	[27]
10%Cu/SBA-15	$8.3 \times 10^{-3} \text{ s}^{-1}$	[28]
CoFe ₂ O ₄ /PPy/Pd	13.2×10 ⁻³ s ⁻¹	[29]
Fe ₃ O ₄ /graphene/Pt	20.0×10 ⁻³ s ⁻¹	[30]
Fe ₃ O ₄ /graphene/Pd	61.0×10 ⁻³ s ⁻¹	[30]
Au/graphene hydrogel	3.17×10 ⁻³ s ⁻¹	[31]
Ni-Ag@RGO	89×10 ⁻³ s ⁻¹	[32]
Ni-RGO	1.8×10 ⁻³ s ⁻¹	[33]
PtNi nanosnowflakes/RGO	2.17×10 ⁻³ s ⁻¹	[34]
Ag-Au/rGO	3.47×10 ⁻³ s ⁻¹	[35]
CuO _{0.05} -rGO	231×10 ⁻³ s ⁻¹	[36]
2.5Ru@SBA-15	13.5×10 ⁻³ s ⁻¹	[37]

96CuFe ₂ O ₄ -4RGO	$17.2 \times 10^{-3} \text{ s}^{-1}$	This work
CuFe ₂ O ₄	$4.2 \times 10^{-3} \text{ s}^{-1}$	This work
NiFe ₂ O ₄	1.9×10 ⁻³ s ⁻¹	[43]
CuFe ₂ O ₄	$14.1 \times 10^{-3} \text{ s}^{-1}$	[43]
98BiFeO ₃ -2RGO	12.0×10 ⁻³ s ⁻¹	[42]
50Ni _{0.8} Zn _{0.2} Fe ₂ O ₄ -50RGO	12.2×10 ⁻³ s ⁻¹	[41]
CuFe ₂ O ₄	120.0×10 ⁻³ s ⁻¹	[40]
Ag@mTiO ₂ @CoFe ₂ O ₄	18.0×10 ⁻³ s ⁻¹	[39]
CuO@mTiO ₂ @CoFe ₂ O ₄	12.0×10 ⁻³ s ⁻¹	[38]

Fig. S12 Gas chromatography analysis of progress of $96CuFe_2O_4$ -4RGO catalyzed styrene epoxidation reaction with time.

 Table S7 Comparison of catalytic efficiency of different reported catalysts for the epoxidation

 reaction of styrene.

Catalyst	Styrene Conversion/ Yield (%)	Selectivity of Styrene Oxide formation (%)	Reference
Ag@m-TiO2@CoFe ₂ O ₄	98	94	[39]
98BiFeO ₃ -2RGO	79	90	[42]
Ag-Fe ₃ O ₄	100	84	[44]
Au(1wt.%)/BaTNT	60	80	[45]
CuO@mTiO2@CoFe ₂ O ₄	98	77	[46]
Ag/4A Zeolite	80	89	[47]
TiO ₂ -Ag	83	66	[48]
CuO/nanotubes-450	94	46	[49]
CuO-1	100	44	[50]

Cu-S-SBA-15	84	15	[51]
Ag-Cu/Cu ₂ O CNFs	99	41	[52]
Fe ₃ O ₄ @SiO ₂ -NH ₂ -Cu	85	51	[53]
Au/L-Fe ₃ O ₄	76	70	[54]
Fe ₃ O ₄	43	74	[54]
Fe ₂ O ₃	17	60	[55]
$Ag-Ni_{0.81}Fe_{2.19}O_4$	69	84	[56]
$Ag-Zn_{0.60}Fe_{2.40}O_4$	18	67	[56]
$Mg_{0.4}Fe_{2.6}O_4$	32	4	[57]
$Sr_{0.2}Ca_{0.8}Fe_2O_4$	49	95	[58]
$Ce_{0.3}Co_{0.7}Fe_2O_4$	90	-	[59]
$Mg_{0.5}Cu_{0.5}Fe_2O_4$	21	-	[60]
$Ni_{0.5}Zn_{0.5}Fe_2O_4$	30	-	[61]
NiFe ₂ O ₄	31	-	[61]
ZnFe ₂ O ₄	26	-	[61]
CaFe ₂ O ₄	38	-	[62]
SrFe ₂ O ₄	51	-	[63]
CuFe ₂ O ₄	85	37	This work
96CuFe ₂ O ₄ -4RGO	90	65	This work

Fig. S13 (a) Magnetic separation of catalyst by applying a magnet externally after completion of the reaction and (b) Reusability of the catalyst for reduction of 4-NP.

Fig. S14 (a) Magnetic separation of catalyst by applying a magnet externally after completion of the reaction and (b) Reusability of the catalyst for styrene epoxidation reaction.

Fig. S15 (a) XRD and (b) TEM micrograph of the recycled 96CuFe₂O₄-4RGO catalyst.

Fig. S16 Cyclic voltammetry curves of (a) $CuFe_2O_4$ and (b) $96CuFe_2O_4$ -4RGO in 3 M KOH at different scanning rates (10–100 mV s⁻¹). (c) Randles-Sevcik plot for $CuFe_2O_4$ and $96CuFe_2O_4$ -4RGO nanocomposite in 3 M KOH.

Fig.17 Galvanostatic charge-discharge curves of (a) pure $CuFe_2O_4$ and (b) $96CuFe_2O_4$ -4RGO electrodes at different current densities (2 to10 A g⁻¹) in 3 M KOH.

Fig. S18 Galvanostatic charge-discharge curves of RGO electrodes at different current densities (2 to 10 A g⁻¹) in 3 M KOH.

Fig. S19 FESEM micrograph of RGO.

Fig. S20 Cyclic voltammetry curves of (a) $96CuFe_2O_4-4RGO$ electrode in 3 M KOH + 0.1 M $K_4[Fe(CN)_6]$. at different scanning rates (10-100 mV s⁻¹). (b) Randles–Sevcik plots of the $96CuFe_2O_4-4RGO$ nanocomposite in 3 M KOH, and 3 M KOH + 0.1 M $K_4[Fe(CN)_6]$.

Fig. S21 Galvanostatic charge–discharge profile of $96CuFe_2O_4$ -4RGO electrode in 3 M KOH + 0.1 M K₄[Fe(CN)₆] with changing current density from 2 to 10 A g⁻¹.

Fig. S22. (a) Cyclic voltammetry curves at different scan rates (10-100 mV s⁻¹) and (b) galvanostatic charge–discharge curves with increasing current densities from 2 to 10 A g⁻¹ of a 96CuFe₂O₄-4RGO electrode in 3 M KOH + 0.1 M K₄[Fe(CN)₆] in a two-electrode system.

Material	Specific capacitance (F g ⁻¹)	Current Density (A g ⁻¹)	Electrolyte	Power Density (W kg ⁻¹)	Energy Density (Wh kg ⁻¹)	Reference
Graphene-NiFe ₂ O ₄	345	1	1 M Na ₂ SO ₄	-	-	[64]
ZnFe ₂ O ₄ /NRG	244	0.5	1 M KOH	3000	6.7	[65]
Fe ₃ O ₄ @carbon nanosheet	586	0.5	PVA-KOH	351	18.3	[66]
MnFe ₂ O ₄ /Graphene	120	0.1	(PVA)- H ₂ SO ₄ gel	400	5.0	[67]
Cobalt Ferrite/Graphene/	767.7	0.1	1 M KOH	178.2	79.7	[68]
Polyaniline						
Manganese ferrite/Graphene/	307.2	0.1	1 М КОН	-	13.5	[69]
Polyaniline						
3D Fe ₃ O ₄ /rGO hybrids	455	3.6	2 М КОН	2740	80.9	[70]
Mg-Ferrite rose nano flower	240	20m Vs ⁻¹	3 М КОН	-	-	[71]
ZnFe ₂ O ₄ -CNT	217 mAh g ⁻¹	5 mV s ⁻¹	1 M NaOH	377.86	12.80	[72]
MnCoFeO ₄	675	1 mVs ⁻¹	6 M KOH	337.50	18.85	[73]
$Ni_{0.8}Zn_{0.2}Al_{0.1}Fe_{1.9}$ O ₄ /rGO	136.91	1	6 M KOH	-	16.80	[74]
MoO ₂ / NiFe ₂ O ₄	2105 mAh g ⁻¹	4	3 М КОН	-	-	[75]

 Table S8 Comparison for different ferrite and ferrite-RGO based composite for supercapacitor application.

96CuFe ₂ O ₄ -4RGO	797	2	3 M KOH + 0.1 M K4[Fe(CN)6]	380	16	This work
Pure CuFe ₂ O ₄	83	2	3 М КОН	460	2.4	This work
CuFe ₂ O ₄ -GN	576.6	1	3 М КОН	1100	15.8	[82]
CuFe ₂ O ₄	81.5	1	3 М КОН	1130	1.4	[82]
CuFe ₂ O ₄ -Fe ₂ O ₃	638.24	10 mV s ⁻¹	1 M H ₂ SO ₄			[81]
CuFe ₂ O ₄	48.77	10 mV s ⁻¹	1 M H ₂ SO ₄	-	-	[81]
CuFe ₂ O ₄ film	5.7	0.3µAcm ⁻²	1 M NaOH	-	-	[80]
CuFe ₂ O ₄ fiber	28	0.5	1 M KOH	-	-	[79]
CuFe ₂ O ₄ nanosphere	334	0.6	1 M KOH	-	-	[78]
CuFe ₂ O ₄ nanowires/CNT	267		1 M KCl	1880.1	62.67	[77]
CuFe ₂ O ₄	47		1 M KCl	1985.40	11.03	[77]
98BiFeO ₃ -2RGO	928.43	5	3 M KOH + 0.1 M K ₄ [Fe(CN) ₆]	950	18.62	[76]

References

- 1 W. S. Hummers Jr and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
- 2 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188.
- 3 G. Giovannetti, P. Khomyakov, G. Brocks, V. v. Karpan, J. Van den Brink and P. J. Kelly, *Phys. Rev. Lett.*, 2008, **101**, 026803.
- 4 Z. Jiang, W. Zhang, W. Shangguan, X. Wu and Y. Teraoka, J. Phys. Chem. C, 2011, 115, 13035.
- 5. D. Moitra, S. Dhole, B. K. Ghosh, M. Chandel, R. K. Jani, M. K. Patra, S. R. Vadera and N. N. Ghosh, J. Phys. Chem. C, 2017, **121**, 21290.
- 6. B. Luo, X. Wang, E. Tian, H. Gong, Q. Zhao, Z. Shen, Y. Xu, X. Xiao and L. Li, ACS Appl. Mater. Interfaces, 2016, 8, 3340.
- 7. R. Zhang, Q. Yuan, R. Ma, X. Liu, C. Gao, M. Liu, C.-L. Jia and H. Wang, RSC Adv, 2017, 7, 21926-21932.
- 8. X. Zuo, A. Yang, C. Vittoria and V. G. Harris, J. Appl. Phys, 2006, 99, 08M909.
- 9. M. Feng, A. Yang, X. Zuo, C. Vittoria and V. G. Harris, J. Appl. Phys, 2010, **107**, 09A521.
- 10. J. Gomes, M. Sousa, F. Tourinho, J. Mestnik-Filho, R. Itri and J. Depeyrot, J. Magn. Magn. Mater., 2005, 289, 184-187.
- 11. J. Gomes, M. Sousa, G. da Silva, F. Tourinho, J. Mestnik-Filho, R. Itri, G. d. M. Azevedo and J. Depeyrot, J. Magn. Magn. Mater., 2006, **300**, e213.
- 12. B. K. Chatterjee, K. Bhattacharjee, A. Dey, C. K. Ghosh and K. K. Chattopadhyay, Dalton Trans., 2014, 43, 7930..
- 13. S. Schaefer, G. Hundley, F. Block, R. McCune and R. Mrazek, Metallurgical Transactions, 1970, 1, 2557.
- 14. A. Gangula, R. Podila, L. Karanam, C. Janardhana and A. M. Rao, *Langmuir*, 2011, 27, 15268.
- 15. P. Deka, R. C. Deka and P. Bharali, New J. Chem., 2014, 38, 1789.
- 16. B. Naik, S. Hazra, V. S. Prasad and N. N. Ghosh, Catal. Commun., 2011, 12, 1104..
- 17 L. Rout, A. Kumar, R. S. Dhaka, G. N. Reddy, S. Giri and P. Dash, Appl. Catal., A, 2017, 538, 107.
- 18 B. Naik, S. Hazra, D. Desagani, B. K. Ghosh, M. K. Patra, S. R. Vadera and N. N. Ghosh, RSC Adv., 2015, 5, 40193.
- 19 B. K. Ghosh, S. Hazra, B. Naik and N. N. Ghosh, *Powder Technol.*, 2015, **269**, 371.
- 20 J.-R. Chiou, B.-H. Lai, K.-C. Hsu and D.-H. Chen, J. Hazard. Mater., 2013, 248, 394.
- 21 Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li and X. Li, J. Colloid Interface Sci., 2012, 383, 96.
- 22 F.-h. Lin and R.-a. Doong, J. Phys. Chem. C, 2011, 115, 6591.
- 23 Z. Z. Wang, S. R. Zhai, B. Zhai and Q. D. An, Eur. J. Inorg. Chem., 2015, 10, 1692.
- 24 J. Zheng, Y. Dong, W. Wang, Y. Ma, J. Hu, X. Chen and X. Chen, Nanoscale, 2013, 5, 4894.
- 25 G. Sharma and P. Jeevanandam, Eur. J. Inorg. Chem., 2013, 36, 6126.
- 26 M. Zhu, C. Wang, D. Meng and G. Diao, J. Mater. Chem.A 2013, 1, 2118.
- 27 B. K. Ghosh, S. Hazra and N. N. Ghosh, Catal. Commun., 2016, 80, 44.
- 28 J. Wang, X. Shao, G. Tian and W. Bao, J. Porous Mater., 2018, 25, 207.
- 29 W. Sun, X. Lu, Y. Xue, Y. Tong and C. Wang, Macromol. Mater. Eng., 2014, 299, 361.
- 30 X. Li, X. Wang, S. Song, D. Liu and H. Zhang, *Chemistry-A European Journal*, 2012, **18**, 7601.
- 31 J. Li, C.-y. Liu and Y. Liu, J. Mater. Chem., 2012, 22, 8426.
- 32 L. Zhang, T. Wu, X. Xu, F. Xia, H. Na, Y. Liu, H. Qiu, W. Wang and J. Gao, J. Alloys Compd., 2015, 628, 364.
- 33 Y. Tian, Y. Liu, F. Pang, F. Wang and X. Zhang, Colloids Surf., A, 2015, 464, 96.
- 34 P. Song, J.-J. Feng, S.-X. Zhong, S.-S. Huang, J.-R. Chen and A.-J. Wang, RSC Adv., 2015, 5, 35551.
- 35 K. Hareesh, R. Joshi, D. Sunitha, V. Bhoraskar and S. Dhole, *Appl. Surf. Sci.*, 2016, **389**, 1050.
- 36 C. Sarkar and S. K. Dolui, RSC Adv., 2015, 5, 60763.
- 37 B. K. Ghosh, S. Hazra, B. Naik and N. N. Ghosh, J. Nanosci. Nanotechnol., 2015, 15, 6516.
- 38 B. K. Ghosh, D. Moitra, M. Chandel, M. K. Patra, S. R. Vadera and N. N. Ghosh, Catal. Lett., 2017, 147, 1061.
- 39 B. K. Ghosh, D. Moitra, M. Chandel, H. Lulla and N. N. Ghosh, Mater. Res. Bull., 2017, 94, 361.
- 40 J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo and X. Chen, Chem. Eng. J., 2013, 221, 16.
- 41 D. Moitra, B. Ghosh, M. Chandel, R. Jani, M. Patra, S. Vadera and N. Ghosh, RSC Adv., 2016, 6, 14090.
- 42 D. Moitra, B. K. Ghosh, M. Chandel and N. N. Ghosh, RSC Adv., 2016, 6, 97941.
- 43 A. Goyal, S. Bansal and S. Singhal, *Int. J. Hydrogen Energy*, 2014, **39**, 4895.
- 44 D.-H. Zhang, G.-D. Li, J.-X. Li and J.-S. Chen, Chem. Commun., 2008, 29, 3414.
- 45 D. Nepak and D. Srinivas, Appl. Catal., A, 2016, **523**, 61.
- 46 B. K. Ghosh, D. Moitra, M. Chandel, M. K. Patra, S. R. Vadera and N. N. Ghosh, Catal. Lett., 2017, 147, 1061.
- 47 X. Hu, J. Bai, C. Li, H. Liang and W. Sun, Eur. J. Inorg. Chem., 2015, 22, 3758.
- 48 D. Yang, N. Yang and J. Ge, *CrystEngComm*, 2013, **15**, 7230.

- 49 C. Hu, L. Zhang, J. Zhang, L. Cheng, Z. Zhai, J. Chen and W. Hou, Appl. Surf. Sci., 2014, 298, 116.
- 50 G. Qiu, S. Dharmarathna, Y. Zhang, N. Opembe, H. Huang and S. L. Suib, J. Phys. Chem. C, 2011, 116, 468.
- 51 Y. Yang, S. Hao, P. Qiu, F. Shang, W. Ding and Q. Kan, Reac. Kinet., Mech. Cat., 2010, 100, 363.
- 52 Q. Wang, C. Li, J. Bai, W. Sun and J. Wang, J. Inorg. Organomet. Polym Mater., 2016, 26, 488.
- 53 J. Sun, G. Yu, L. Liu, Z. Li, Q. Kan, Q. Huo and J. Guan, Catal. Sci. Technol., 2014, 4, 1246.
- 54 C. Huang, H. Zhang, Z. Sun, Y. Zhao, S. Chen, R. Tao and Z. Liu, J Colloid Interface Sci., 2011, 364, 298.
- 55 V. R. Choudhary, R. Jha and P. Jana, *Catal. Commun.*, 2008, **10**, 205.
- 56 D.-H. Zhang, H.-B. Li, G.-D. Li and J.-S. Chen, *Dalton Trans.*, 2009, **47**, 10527.
- 57 N. Ma, Y. Yue, W. Hua and Z. Gao, Appl. Catal., A, 2003, 251, 39.
- 58 R. Y. Pawar, P. V. Adhyapak and S. K. Pardeshi, Appl. Catal., A, 2014, 478, 129.
- 59 J. Tong, W. Li, L. Bo, H. Wang, Y. Hu, Z. Zhang and A. Mahboob, J. Catal., 2016, 344, 474.
- 60 X. Cai, H. Wang, Q. Zhang and J. Tong, J. Sol-Gel Sci. Technol., 2014, 69, 33.
- 61 D. Guin, B. Baruwati and S. V. Manorama, J. Mol. Catal. A: Chem., 2005, 242, 26.
- 62 S. K. Pardeshi and R. Y. Pawar, Mater. Res. Bull., 2010, 45, 609.
- 63 S. K. Pardeshi and R. Y. Pawar, J. Mol. Catal. A: Chem., 2011, 334, 35.
- 64 Z. Wang, X. Zhang, Y. Li, Z. Liu and Z. Hao, J. Mater. Chem. A, 2013, 1, 6393.
- 65 L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, M. Zhang and P. Yang, Sci. Rep., 2017, 7, 43116.
- 66 H. Fan, R. Niu, J. Duan, W. Liu and W. Shen, ACS Appl. Mater. Interfaces, 2016, 8, 19475.
- 67 W. Cai, T. Lai, W. Dai and J. Ye, J. Power Sources, 2014, 255, 170.
- 68 P. Xiong, H. Huang and X. Wang, J. Power Sources, 2014, 245, 937.
- 69 P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu and X. Wang, J. Power Sources, 2014, 266, 384.
- 70 R. Kumar, R. K. Singh, A. R. Vaz, R. Savu and S. A. Moshkalev, ACS Appl. Mater. Interfaces, 2017, 9, 8880.
- 71 K. Malaie, M. Ganjali, T. Alizadeh and P. Norouzi, J Mater Sci-Mater El., 2018, 1.
- 72 S. S. Raut, B. R. Sankapal, M. Hossain, A. Shahriar, S. Pradhan, R. R. Salunkhe and Y. Yamauchi, *Eur. J. Inorg. Chem.*, 2018, **2**, 137.
- 73 A. E. Elkholy, F. E.-T. Heakal and N. K. Allam, RSC Adv., 2017, 7, 51888.
- 74 F. Meng, M. Yang, L. Zhao, Y. Zhang, X. Shang, P. Jin and W. Zhang, Ceram. Int., 2017, 43, 15959.
- 75 Y. Zhao, M. Yuan, Y. Chen, J. Yan, L. Xu, Y. Huang, J. Lian, J. Bao, J. Qiu and L. Xu, Electrochim. Acta, 2018, 260, 439.
- 76 D. Moitra, C. Anand, B. K. Ghosh, M. Chandel and N. N. Ghosh, ACS Appl. Energy Mater., 2018, 1, 464.
- 77 S. Giri, D. Ghosh, A. P. Kharitonov and C. K. Das, *Funct. Mater. Lett.*, 2012, **5**, 1250046.
- 78 M. Zhu, D. Meng, C. Wang and G. Diao, ACS Appl. Mater. Interfaces, 2013, 5, 6030.
- 79 J. Zhao, Y. Cheng, X. Yan, D. Sun, F. Zhu and Q. Xue, CrystEngComm, 2012, 14, 5879.
- 80 D. Ham, J. Chang, S. Pathan, W. Kim, R. Mane, B. Pawar, O.-S. Joo, H. Chung, M.-Y. Yoon and S.-H. Han, *Curr. Appl Phys.*, 2009, **9**, S98.
- 81 R. Khan, M. Habib, M. A. Gondal, A. Khalil, Z. U. Rehman, Z. Muhammad, Y. A. Haleem, C. Wang, C. Q. Wu and L. Song, *Mater. Res. Express*, 2017, 4, 105501.
- 82 W. Zhang, B. Quan, C. Lee, S.-K. Park, X. Li, E. Choi, G. Diao and Y. Piao, ACS Appl. Mater. Interfaces A, 2015, 7, 2404.