Supporting information

Rh(III)-catalyzed Synthesis of Tetracyclic Isoquinolinium Salts via C-H Activation and [4+2] Annulation of 1-Phenyl-3,4-Dihydroisoquinolines and Alkynes in Ethanol

Xinxin Dang,^a Yu He,^a Yingtian Liu,^a Xuehong Chen,^a Jun-long Li,^b Xian-li Zhou,^{*a} Hezhong Jiang,^{*, a} Jiahong Li.^{*, a}

a School of Life Science and Engineering, Southwest Jiaotong University Chengdu 610041, China;

b Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu, 610052, China.

Table of contents

1.	General Methods	S2
2.	Optimization of the reaction conditions	S2
3. the	General Procedure for Synthesis of Tetracyclic Isoquino Scope of Non-Cyclicimine Substrates	linium Salts and S3
4.	Characterization Data	S4
5.	Reference	
6.	NMR Spectra	
7.	Crystal Data	

1. General Methods

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. [(Cp*RhCl₂)₂], AgOOCCF₃ and diphenylacetylene was purchased from aladdin. Symmetrical diarylalkynes **2b-e**¹ and 1-phenyl-3,4-dihydroisoquinolines² were prepared according to the literature procedures. Ethanol was obtained by atmospheric distillation.

NMR spectra were obtained on a JNM-ECZ600R/S1 spectrometer. NMR data were obtained for ¹H at 600 MHz, and for ¹³C at 150 MHz. The ¹H NMR (600 MHz) chemical shifts Chemical shifts were measured relative to CDCl₃ or DMSO-d₆ or CD₃OD as the internal references (CDCl₃: $\delta = 7.26$, DMSO-d₆: $\delta = 2.50$, CD₃OD: $\delta = 3.31$). The ¹³C NMR (150 MHz) chemical shifts were given using CDCl₃ or DMSO-d₆ or CD₃OD as the internal references (CDCl₃: $\delta = 77.16$, DMSOd₆: $\delta = 39.52$, CD₃OD: $\delta = 49.00$). ESI HRMS was recorded on a Waters SYNAPT G2 and Water XEVO G2 Q-ToF. TLC was performed on glass-backed silica plates. Column chromatography was performed on silicagel (300-400 mesh), eluting with dichloromethane and methanol.

2. Optimization of the reaction conditions

				1				
Entry	Catalyst	Oxidant	Addictive	Acid/base	T/ °C	Solvent	Time	3aa (%)
1	[Cp*RhCl ₂] ₂	-	-	-	Reflux	dioxane	4 h	Trace
2	[Cp*RhCl ₂] ₂	AgOTf			Reflux	dioxane	4 h	40
3	[Cp*RhCl ₂] ₂	Ag(OAc) ₂			Reflux	dioxane	4 h	Trace
4	[Cp*RhCl ₂] ₂	AgSbF ₆			Reflux	dioxane	4 h	34
6	[Cp*RhCl ₂] ₂	AgBF ₄			Reflux	dioxane	4h	30
7	[Cp*RhCl ₂] ₂	AgOOCCF ₃			Reflux	dioxane	4 h	68
8	-	AgOOCCF ₃			Reflux	dioxane	4 h	ND
9¢	[Cp*RhCl ₂] ₂	AgOOCCF ₃		NaOH	Reflux	dioxane	4 h	24
10 ^d	[Cp*RhCl ₂] ₂	AgOOCCF ₃		Na ₂ CO ₃	Reflux	dioxane	4 h	57
11	[Cp*RhCl ₂] ₂	AgOOCCF ₃			Reflux	TFA	4 h	Trace
12	[Cp*RhCl ₂] ₂	AgOOCCF ₃			Reflux	DCE	4 h	70
13	[Cp*RhCl ₂] ₂	AgOOCCF ₃			Reflux	toluene	4 h	95
14	[Cp*RhCl ₂] ₂	AgOOCCF ₃			Reflux	DCM	4 h	25
15	[Cp*RhCl ₂] ₂	AgOOCCF ₃			120	decalin	4 h	Trace
16	[Cp*RhCl ₂] ₂	AgOOCCF ₃			120	DMF	4 h	70
17	[Cp*RhCl ₂] ₂	AgOOCCF ₃			120	DMSO	4 h	45
18	[Cp*RhCl ₂] ₂	AgOOCCF ₃			Reflux	H ₂ O	4 h	30

Table S1. Screening for the optimal reaction conditions^{a,b}

19e	[Cp*RhCl ₂] ₂	AgOOCCF ₃		Reflux	H ₂ O+CTAB	4 h	52
20	[Cp*RhCl ₂] ₂	AgOOCCF ₃		Reflux	EtOH	4 h	99
21	[Cp*RhCl ₂] ₂	AgOOCCF ₃		Reflux	EtOH	1 h	69
22	[Cp*RhCl ₂] ₂	AgOOCCF ₃		Reflux	isopropanol	1 h	65
23	[Cp*RhCl ₂] ₂	AgOOCCF ₃		120	butyl alcohol	1 h	67
24	[Cp*RhCl ₂] ₂	AgOOCCF ₃		Reflux	TFEA	1 h	67
25	[Cp*RhCl ₂] ₂	AgOOCCF ₃	air	Reflux	EtOH	10min	73
26	[Cp*RhCl ₂] ₂	AgOOCCF ₃	$K_2S_2O_8$	Reflux	EtOH	10 min	81
27	[Cp*RhCl ₂] ₂	AgOOCCF ₃	C ₆ H ₅ I(O ₂ CCH ₃) ₂	Reflux	EtOH	10 min	90
28	[Cp*RhCl ₂] ₂	AgOOCCF ₃	DDQ	Reflux	EtOH	10 min	Trace
29	[Cp*RhCl ₂] ₂	AgOOCCF ₃	CuSO ₄	Reflux	EtOH	1 h	74
30	[Cp*RhCl ₂] ₂	AgOOCCF ₃	CuCl ₂ .2H ₂ O	Reflux	EtOH	1 h	65
31	[Cp*RhCl ₂] ₂	AgOOCCF ₃	Cu(NO) ₃ .2H ₂ O	Reflux	EtOH	1 h	66
32	[Cp*RhCl ₂] ₂	AgOOCCF ₃	Cu(OOCCF ₃) ₂ .H ₂ O	Reflux	EtOH	10 min	95
33 ^f	[Cp*RhCl ₂] ₂	AgOOCCF ₃	Cu(OOCCF ₃) ₂ .H ₂ O	Reflux	EtOH	10 min	75
34	[Cp*RhCl ₂] ₂	AgOOCCF ₃	Cu(OAc) ₂	Reflux	EtOH	10 min	99
35 ^f	[Cp*RhCl ₂] ₂	AgOOCCF ₃	Cu(OAc) ₂	Reflux	EtOH	10 min	99
36 ^g	[Cp*RhCl ₂] ₂	Cu(OAc) ₂	AgOOCCF ₃	Reflux	EtOH	10 min	99
37 ^h	[Cp*RhCl ₂] ₂	Cu(OAc) ₂	AgOOCCF ₃	Reflux	EtOH	10 min	99
38 ⁱ	[Cp*RhCl ₂] ₂	Cu(OAc) ₂	AgOOCCF ₃	Reflux	EtOH	10 min	85
39 ^j	[Cp*RhCl ₂] ₂	Cu(OAc) ₂	AgOOCCF ₃	Reflux	EtOH	10 min	81
40	[Cp*RhCl ₂] ₂	AgOOCCF ₃	air	Reflux	EtOH	10min	73
41	-	-	Cu(OAc) ₂	Reflux	EtOH	10 min	ND
42	-	AgOOCCF ₃	Cu(OAc) ₂	Reflux	EtOH	10 min	ND
43	[Cp*RhCl ₂] ₂	Cu(OAc) ₂	-	Reflux	EtOH	10 min	85
44	[RuCl ₂ cyme] ₂	AgOOCCF ₃	Cu(OAc) ₂	Reflux	EtOH	10 min	Trace
45	[Cp*IrCl ₂] ₂	AgOOCCF ₃	Cu(OAc) ₂	Reflux	EtOH	10 min	Trace

^aReaction conditions: **1a** (0.32 mmol), **2a** (0.32 mmol), 0.5 mol% of $[Cp*RhCl_2]_2$, 1 eq of additive, 1 eq of oxidants, 3 mL of solvent, ND = Not Detected; ^bisolated yields; ^cNaOH (20 mol%); ^dNa₂CO₃ (20 mol%); ^eCTAB (Cetyltrimethyl Ammonium Bromide) (5 mol%); ^fS/C = 400; ^g1.0 eq of AgOOCCF₃, ^h0.5 eq AgOOCCF₃. ⁱ0.1 eq AgOOCCF₃, ^j0.05eq AgOOCCF₃.

3. General Procedure for Synthesis of Tetracyclic Isoquinolinium Salts and the Scope of Non-Cyclicimine Substrates

General procedure: A reaction tube with a magnetic stir bar was charged with 1 (0.32 mmol, 1 eq), 2 (0.32 mmol, 1 eq), $[Cp*RhCl_2]_2$ (0.5 mol%), AgOOCCF₃ (1.5 eq) and Cu(OAc)₂ (1 eq) and ethanol (3 mL), reflux. The resulting mixture was stirred for 10 min. After completion, the reaction mixture was purified by flash chromatography eluting with methanol and dichloromethane (1:20) to give the product.

Table S2. Scope of Non-Cyclicimine Substrates

General procedure: A reaction tube with a magnetic stir bar was charged with **4** (0.32 mmol, 1 eq), 1, 2-diphenylethyne **2a** (0.32 mmol, 1 eq), $[Cp*RhCl_2]_2$ (0.5 mol%), AgOOCCF₃ (1.5 eq) and Cu(OAc)_2 (1 eq) and ethanol (3 mL). The resulting mixture was stirred for 30 min. After completion, the reaction mixture was purified by flash chromatography eluting with methanol and dichloromethane (1:20) to give the product.

4. Characterization Data

^{3aa} **2,3-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3aa).** A yellow solid (176.9 mg, 99% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.68 (d, *J* = 8.89 Hz, 1H), 7.94 (t, *J* = 7.38 Hz, 1H), 7.89 (t, *J* = 7.68 Hz, 1H), 7.72 (d, *J* = 8.52 Hz, 1H), 7.50 (s, 1H), 7.45 (m, 2H), 7.35 (m, 3H), 7.30 (m, 3H), 7.25 (m, 2H), 7.08 (s, 1H), 4.44 (t, *J* = 5.25, 2H), 4.05 (s, 3H), 3.96 (s, 3H), 3.25 (t, *J* = 5.25, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.6, 154.1, 148.5, 144.3, 139.0, 136.1, 135.5, 133.8, 136.6, 131.6, 130.7, 130.5, 130.4, 130.3, 130.2, 129.1, 128.6, 128.5, 127.3, 125.1, 119.0, 116.2, 110.9, 56.8, 56.7, 52.4, 27.3 ppm. ESI HRMS: calcd. for C₃₁H₂₆NO₂⁺ [M-CF₃COO]⁺ 444.19634, found 444.1989.

2,3,11-trimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-

alisoquinolin-7-ium 2,2,2-trifluoroacetate (3ba). A yellow solid (186.5 mg, 98% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.60 (d, J = 8.63 Hz, 1H), 7.51 (d, J = 8.03 Hz, 1H), 7.46 (s, 1H), 7.34 (s, 5H), 7.29 (m, 3H), 7.18 (m, 2H), 7.09 (s, 1H), 6.89 (s, 1H), 4.30 (s, 2H), 4.04 (s, 3H), 3.97 (s, 3H), 3.82 (s, 3H), 3.21 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 165.3, 154.2, 152.6, 148.4, 144.4, 141.9, 134.5, 134.0, 133.4, 132.8, 131.7, 130.4, 130.3, 130.2, 129.1, 128.7, 128.6, 122.7, 120.2, 119.0, 115.9, 110.9, 106.0, 56.9, 56.7, 56.2, 51.9, 27.5 ppm. ESI HRMS: calcd. for C₃₂H₂₈NO₃⁺ [M-CF₃COO]⁺ 474.20690, found 474.2079.

11-cyano-2,3-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-

a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ca). A yellow solid (179.5 mg, 96% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.89 (s, 1H), 8.66 (d, J = 9.36 Hz, 1H), 8.50 (d, J = 9.36 Hz, 1H), 8.15 (s, 1H), 7.51 (s, 1H), 7.36-7.35 (m, 3H), 7.30-7.27 (m, 4H), 7.17-7.15 (m, 2H), 6.98 (s, 1H), 4.29 (s, 2H), 4.29 (s, 3H), 4.03 (s, 3H), 3.14 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 168.0, 155.0, 153.8, 149.2, 144.1, 138.8, 132.6, 131.7, 131.0, 130.5, 130.3, 130.2, 129.4, 129.0, 128.8, 127.0, 126.1, 119.0, 116.2, 110.6, 57.0, 56.8, 52.3, 27.4 ppm. ESI HRMS: calcd. for C₃₂H₂₅N₂O₂⁺ [M-CF₃COO]⁺ 469.19159, found 469.1938.

11-fluoro-2,3-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-

a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3da). A yellow solid (176.5 mg, 95% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.73 (q, 1H), 7.63 (t, J = 8.44 Hz, 1H), 7.46 (s, 1H), 7.44 (d, J = 3.78, 2H), 7.35-7.34 (m, 3H), 7.32-7.28 (m, 4H), 7.20 (m, 2H), 7.05 (s, 1H), 4.40 (s, 2H), 4.05 (s, 3H), 3.98 (s, 3H), 3.23 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 166.4 (d, J = 261.1 Hz), 154.6, 154.0, 148.6, 145.1, 141.7 (d, J = 10.5 Hz), 135.3, 135.4, 134.6, 134.5, 133.5 (d, J = 11.5 Hz), 131.5, 130.4, 130.3 (d, J = 4.3 Hz), 129.2, 128.8, 128.7, 122.4, 120.7 (d, J = 24.3 Hz), 118.9, 116.2, 111.6 (d, J = 23.1 Hz), 110.8, 56.9, 56.7, 52.2, 27.3 ppm. ESI HRMS: calcd. for C₃₁H₂₅FNO₂⁺ [M-CF₃COO]⁺ 462.18691, found 462.1881.

11-chloro-2,3-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-

a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ea). A yellow solid (191.7 mg, 98% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.64 (s, 1H), 7.82 (s, 1H), 7.65 (s, 1H), 7.51-7.31 (m, 10H), 7.19 (s, 2H), 7.09 (s, 1H), 4.43 (s, 2H), 4.05 (s, 3H), 3.98 (s, 3H), 3.27 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.8, 154.3, 148.7, 145.5, 143.0, 140.0, 135.1, 133.7, 133.3, 132.5, 131.5, 131.2, 130.6, 130.5, 130.4, 129.2, 128.8, 128.7, 126.1, 123.7, 118.9, 116.1, 110.9, 56.9, 56.8, 52.4, 27.3 ppm. ESI HRMS: calcd. for C₃₁H₂₅ClNO₂⁺ [M-CF₃COO]⁺ 478.15737, found 478.1592.

11-bromo-2,3-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-

a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3fa). A yellow solid (203.2 mg, 99% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.54 (d, J = 8.50 Hz, 1H), 7.97 (d, J = 7.82 Hz, 1H), 7.86 (s, 1H), 7.47-7.42 (m, 3H), 7.35-7.31 (m, 6H), 7.19 (m, 2H), 7.07 (s, 1H), 6.89 (s, 1H), 4.41 (s, 2H), 4.06 (s, 3H), 3.98 (s, 3H), 3.20 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.7, 154.4, 148.7, 145.6, 140.0, 135.0, 133.9, 133.6, 133.3, 132.2, 130.6, 130.6, 130.4, 129.5, 129.2, 128.9, 128.7, 123.9, 118.9, 116.1, 110.9, 56.9, 56.8, 52.5, 27.3 ppm. ESI HRMS: calcd. for C₃₁H₂₅BrNO₂⁺ [M-CF₃COO]⁺ 522.10690, found 522.1081.

11-iodo-2,3-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-

a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ga). A yellow solid (210.9 mg, 97% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.32 (d, J = 8.91Hz, 1H), 8.13 (d, J = 9.06, 1.41 Hz, 1H), 8.05 (d, 1H), 7.40-7.37 (m, 3H), 7.34-7.30 (m, 6H), 7.18 (m, 2H), 7.06 (s, 1H), 4.36 (t, J = 6.03, 2H), 4.04 (s, 3H), 3.96 (s, 3H), 3.21 (t, J = 6.17, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.8, 154.5, 148.6, 145.6, 139.5, 139.2, 136.0, 134.5, 133.8, 133.3, 131.4, 130.5, 130.3, 129.2, 128.8, 128.7, 124.1, 118.8, 116.0, 110.9, 105.4, 56.8, 56.8, 52.4, 27.2 ppm. ESI HRMS: calcd. for C₃₁H₂₅INO₂⁺ [M-CF₃COO]⁺ 570.09317, found 570.0945.

1,11,12-trimethoxy-5,6-diphenylisoquinolino[1,2-a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ha). A yellow solid (176.5 mg, 93% yield). ¹H NMR (600 MHz, CD₃OD): δ 7.97 (t, *J* = 7.80Hz, 1H), 7.47 (d, *J* = 9.60 Hz, 1H), 7.34 (m, 4H), 7.28 (m, 4H), 7.18-7.17 (m, 3H), 7.07-7.06 (m, 2H), 3.96 (s, 3H), 3.87 (s, 3H), 3.80 (s, 3H), 3.27 (m, 4H) ppm. ¹³C NMR (150 MHz, CD₃OD): δ 159.8, 155.7, 154.8, 149.3, 145.3, 141.7, 138.4, 136.6, 135.9, 133.4, 132.5, 131.0, 129.9, 129.5, 123.4, 119.7, 118.3, 118.0, 111.9, 110.2, 57.1, 56.8, 56.5, 53.2, 49.0, 27.5 ppm. ESI HRMS: calcd. for C₃₂H₂₈NO₃⁺ [M-CF₃COO]⁺ 474.20690, found 474.2079.

2,3,12-trimethoxy-8,9-diphenyl-5,6-

dihydroisoquinolino[1,2-a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ia). A yellow solid (182.5 mg, 96% yield). ¹H NMR (600 MHz, CD₃Cl₃): δ : 8.24 (d, *J* = 8.95Hz, 1H), 7.96 (s, 1H), 7.83 (t, *J* = 8.33Hz, 1H), 7.63 (d, *J* = 9.10Hz, 1H), 7.58-7.56 (m, 2H), 7.46 (s, 1H), 7.34-7.26 (m, 14H), 7.16-7.13 (m, 9H), 4.38-4.30 (m, 4H), 4.05 (s, 3H), 4.04 (s, 3H), 3.97 (s, 3H), 3.96 (s, 3H), 3.94 (s, 3H), 3.44 (s, 3H), 3.21 (s, 4H) ppm. ¹³C NMR (150 MHz, CD₃OD): δ : 160.8, 156.7, 153.6, 148.3, 144.6, 138.2, 136.1, 134.7, 134.0, 131.7, 131.2, 130.5, 130.2, 129.9, 129.3, 129.2, 129.0, 128.9, 128.6, 128.2, 127.1, 127.0, 126.9, 122.6, 119.3, 115.4, 111.0, 110.7, 108.3, 56.8, 56.8, 56.3, 56.1, 52.7, 52.6, 27.4, 27.2 ppm. ESI HRMS: calcd. for C₃₂H₂₈NO₃⁺ [M-CF₃COO]⁺ 474.20690, found 474.2079

13,14-dimethoxy-4,5-diphenyl-1,2-dihydrobenzo[h]isoquinolino[1,2-

a]isoquinolin-3-ium 2,2,2-trifluoroacetate (3ja). A yellow solid (178.8 mg, 92% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.18 (d, J = 8.47 Hz, 1H), 8.11 (d, J = 9.42 Hz, 1H), 7.95 (d, J = 8.16 Hz, 1H), 7.68-7.63 (m, 2H), 7.45-7.40 (m, 3H), 7.37-7.28 (m, 6H), 7.23 (m, 1H), 7.16 (d, J = 6.8 Hz, 1H), 7.09 (s, 1H), 6.92 (s, 1H), 4.66 (d, J = 14.19 Hz, 1H), 4.23 (t, J = 15.12 Hz, 1H), 4.06 (s, 3H), 3.64 (t, J = 15.48 Hz, 1H), 3.39 (s, 3H), 3.21 (d, J = 15.37 Hz, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.4, 151.3, 148.5, 147.0, 141.0, 137.7, 135.8, 134.0, 133.7, 131.6, 131.3, 131.2, 130.8, 130.7, 130.3, 129.6, 129.5, 129.3, 129.2, 129.2, 129.0, 128.8, 128.7, 128.5, 127.3, 124.6, 122.8, 122.0, 115.6, 110.5, 56.7, 56.0, 52.6, 27.3 ppm. ESI HRMS: calcd. for C₃₅H₂₈NO₂⁺ [M-CF₃COO]⁺ 494.21199, found 494.2135.

4,11-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ka). A yellow solid (171.2 mg, 95% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.58 (d, *J* = 8.76Hz, 1H), 7.59 (s,2H), 7.51 (d, *J* = 8.56, 1H), 7.43-7.26 (m, 9H), 7.21-7.20 (m, 2H), 6.90 (s, 1H), 4.28 (s, 2H), 3.94 (s, 3H), 3.81 (s, 3H), 3.18 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 165.5, 155.9, 152.6, 144.7, 142.0, 135.5, 134.0, 133.2, 131.8, 130.3, 130.2, 129.1, 128.7, 128.6, 128.5, 127.9, 127.0, 125.4, 123.2, 120.8, 115.5, 105.7, 56.2, 56.1, 52.1, 20.9 ppm. ESI HRMS: calcd. for C₃₁H₂₆NO₂⁺ [M-CF₃COO]⁺ 444.19634, found 444.1989.

31a 31a 311-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-315 3,11-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-101 101

Me 2,11-dimethoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-a]isoquinolin-

7-ium 2,2,2-trifluoroacetate (3ma). A yellow solid (176.2 mg, 98% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.61 (d, J = 8.46Hz, 1H), 7.51-7.48 (m, 2H), 7.38 (m, 2H), 7.35-7.27 (m, 6H), 7.23-7.20 (m, 3H), 6.90 (d, J = 2.40Hz, 1H), 4.37 (s, 2H), 4.31 (s, 2H), 3.92 (s, 3H), 3.82 (s, 3H), 3.15 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 165.5, 158.8, 152.5, 144.9, 142.1, 135.5, 134.0, 132.8, 131.8, 130.4, 130.3, 130.2, 129.2, 128.7, 128.7, 123.4, 120.6,119.1, 119.1, 105.8, 56.2, 56.0, 52.8, 27.1 ppm. ESI HRMS: calcd. for C₃₁H₂₆NO₂⁺ [M-CF₃COO]⁺ 444.19634, found 444.1989.

3-fluoro-11-methoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-

a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3na). A yellow solid (158.3 mg, 90% yield). ¹H NMR (600 MHz, CDCl₃): 8.56 (d, *J* = 9.60, 1H), 7.98 (t, *J* = 7.52, 1H), 7.68 (t, *J* = 7.51, 1H), 7.61 (t, *J* = 7.38, 1H), 7.53-7.49 (m, 2H), 7.41 (m, 2H), 7.33-7.27 (m, 6H), 7.23-7.21 (t, 2H), 6.90 (d, *J* = 2.76, 1H), 4.34 (s, 2H), 3.82 (s, 3H), 3.27 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 165.6 (d, *J* = 256.5 Hz), 165.4, 151.8, 144.9, 142.1, 142.0 (d, *J* = 9.2 Hz), 135.8 (d, *J* = 10.1 Hz), 135.4, 134.1, 132.7, 131.9, 130.4 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 135.8 (d, *J* = 10.1 Hz), 135.4 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, *J* = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, J = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, J = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, J = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, J = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, J = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, J = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 115.5 (d, J = 4.5 Hz), 130.2, 129.1, 128.7, 128.6, 123.4, 120.6, 128.8, 128.8, 128.8, 128.8, 128.8, 128.8, 128.8, 128.8, 128.8, 128.8,

23.0 Hz), 115.3 (d, J = 21.4 Hz) 105.8, 56.2, 51.9, 20.0 ppm. ESI HRMS: calcd. for C₃₀H₂₃FNO⁺ [M-CF₃COO]⁺ 432.17635, found 432.1788.

11-methoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-ium **2,2,2-trifluoroacetate (30a)**. A yellow solid (167.6 mg, 99% yield). ¹H NMR (600 MHz, CDCl₃): 8.56 (d, J = 9.60, 1H), 7.98 (t, J = 7.52, 1H), 7.68 (t, J = 7.51, 1H), 7.61 (t, J = 7.38, 1H), 7.53-7.49 (m, 2H), 7.41 (m, 2H), 7.33-7.27 (m, 6H), 7.23-7.21 (t, 2H), 6.90 (d, J = 2.76, 1H), 4.34 (s, 2H), 3.82 (s, 3H), 3.27 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 165.5, 152.6, 144.9, 142.1, 138.8, 135.5, 134.0, 133.8, 133.2, 133.0, 131.8, 130.4, 130.2, 129.1, 128.7, 128.7, 128.2, 127.8, 126.9, 123.3, 120.7, 105.8, 56.2, 52.2, 28.0 ppm. ESI HRMS: calcd. for C₃₀H₂₄NO⁺ [M-CF₃COO]⁺ 414.18577, found 414.1873.

11-nitro-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-ium 2,2,2-trifluoroacetate (**3pa**). A yellow solid (166.5 mg, 95% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.84 (d, *J* = 10.56, 1H), 8.55-8.53 (m, 2H), 8.02 (d, *J* = 7.81, 1H), 7.74 (t, *J* = 7.62, 1H), 7.64 (t, *J* = 7.71, 1H), 7.54-7.50 (m, 3H), 7.36-7.34 (m, 6H), 7.27-7.26 (m, 2H), 4.52 (t, *J* = 6.25, 2H), 3.31 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 155.1, 150.9, 146.8, 139.5, 138.9, 138.8, 134.7, 133.8, 133.5, 132.8, 131.2, 130.6, 130.5, 130.4, 129.3, 129.2, 128.9, 128.2, 128.1, 127.9, 126.8, 123.3, 122.7, 53.4, 27.4 ppm. ESI HRMS: calcd. for C₂₉H₂₁N₂O₂+ [M-CF₃COO]+ 429.16029, found 429.1621.

8,9-diphenyl-5,6-dihydroisoquinolino[**1,2-a**]isoquinolin-7-ium **2,2,2-trifluoroacetate** (**3qa**). A yellow solid (104.2 mg, 65% yield). ¹H NMR (600 MHz, DMSO-d₆): δ 8.12 (t, *J* = 7.86Hz, 1H), 7.59-7.57 (m, 1H), 7.54-7.51 (m, 2H), 7.47-7.40 (m, 7H), 7.38-7.36 (m, 1H), 7.33-7.30 (m, 1H), 7.26 (t, *J* = 7.86Hz, 1H), 7.23 (d, *J* = 7.8Hz, 1H), 7.18-7.17 (m, 2H), 6.78-6.77 (m, 2H), 4.32 (t, *J* = 7.86Hz, 1H), 3.09 (t, *J* = 7.86Hz, 1H) ppm; ¹³C NMR (150 MHz, DMSO-d6): δ 156.2, 150.0, 141.7, 138.0, 137.2, 135.9, 134.2, 130.3, 130.0, 129.8, 129.6, 129.3, 128.8, 128.7, 128.3, 128.1, 127.9, 126.6, 122.5, 121.3, 120.0, 50.9, 32.8 ppm. ESI HRMS: calcd. for C₂₉H₂₂N⁺ [M-CF₃COO]⁺ 384.17521, found 384.1764.

2-methoxy-8,9-diphenyl-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-ium

2,2,2-trifluoroacetate (3ra). A yellow solid (161.5 mg, 95% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.73 (d, J = 8.26Hz, 1H), 7.98 (t, J = 7.86, 1H), 7.92 (t, J = 7.86, 1H), 7.76(d, J = 7.86, 1H), 7.56 (s, 1H), 7.46 (m, 3H), 7.34 (s, 3H), 7.22 (m, 3H), 4.45 (s, 2H), 3.92 (s, 3H), 3.21 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 158.8, 154.1, 144.8, 139.1, 137.5, 135.8, 133.8, 131.6, 130.7, 130.5, 130.5, 130.3, 129.2, 129.2, 128.7, 128.5, 127.6, 127.3, 125.5, 119.5, 119.4, 56.1, 53.5, 27.0 ppm. ESI HRMS: calcd. for C₃₀H₂₄NO⁺ [M-CF₃COO]⁺ 414.18577, found 414.1872.

4,5-diphenyl-1,2-dihydrobenzo[h]isoquinolino[1,2-

a]isoquinolin-3-ium 2,2,2-trifluoroacetate (3sa). A yellow solid (167.5 mg, 95% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.15 (d, J = 7.92, 1H), 7.94 (d, J = 7.92, 1H), 7.66 (t, J = 7.81, 2H), 7.58-7.52 (m, 8H), 7.45 (d, J = 0.96, 2H), 7.38-7.26 (m, 16H), 7.24-7.19 (m, 6H), 4.73 (d, J = 8.46 2H), 4.16 (t, J = 8.46, 2H), 3.81 (t, J = 7.92, 2H), 3.15 (d, J = 7.92H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 151.7, 147.6, 141.2, 137.9, 137.1, 137.0, 134.1, 133.9, 133.8, 133.1, 131.7, 131.0, 131.0, 130.5, 130.3, 130.0, 129.9, 129.6, 129.6, 129.3, 129.0, 129.0, 128.7, 128.5, 128.2, 127.8, 127.5, 122.7, 53.2, 28.0 ppm. ESI HRMS: calcd. for C₃₃H₂₄N⁺ [M-CF₃COO]⁺ 434.19086, found 434.1926.

5,6-diphenyl-9,14-dihydro-8H-indolo[2',3':3,4]pyrido[2,1-a]isoquinolin-7-

ium 2,2,2-trifluoroacetate (3ta). A yellow solid (120.8 mg, 86% yield). ¹H NMR (600 MHz, CDCl₃): δ 11.14 (s, 1H), 7.82 (t, *J* = 7.8, 1H), 7.72 (d, *J* = 8.4, 1H), 7.66(t, *J* = 7.8, 1H), 7.45 (d, *J* = 7.8, 1H), 7.30-7.35 (m, 3H), 7.29-7.26 (m, 2H), 7.24-7.22 (m, 5H), 7.11-7.09 (m, 3H), 6.85 (t, *J* = 7.2, 1H), 4.26 (t, *J* = 7.8, 2H), 3.13 (t, *J* = 7.2, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 150.7, 142.1, 137.1, 136.1, 135.5, 134.3, 133.6, 130.9, 130.0, 129.6, 129.3, 129.0, 128.3, 127.7, 126.4, 126.1, 125.4, 124.3, 121.2, 120.7, 120.3, 118.8, 53.7, 21.2 ppm. ESI HRMS: calcd. for C₃₁H₂₃N₂⁺ [M-CF₃COO]⁺ 423.18611, found 423.1879.

^{3ab} 8,9-bis(4-methoxyl)-2,3-dimethoxy-5,6-dihydroisoquinolino[1,2a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ab). A yellow solid (139.4 mg, 70% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.65 (d, J = 8.16, 1H), 7.95 (t, J = 7.80, 1H), 7.89 (t, J = 7.80, 1H), 7.77 (d, J = 8.40, 1H), 7.45 (s, 1H), 7.28 (s, 1H), 7.27 (s, 1H), 7.09-7.08 (m, 3H), 6.88-6.83 (m, 4H), 4.41 (s, 2H), 4.04 (s, 3H), 3.95 (s, 3H), 3.80 (d, 6H), 3.19 (t, J = 6.00, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 160.7, 159.5, 154.5, 153.8, 148.5, 144.7, 139.4, 136.3, 135.4, 133.6, 131.9, 131.8, 130.6, 130.2, 127.4, 126.1, 125.0, 123.8, 119.1, 116.1, 114.5, 114.1, 110.9, 56.8, 56.7, 56.5, 55.4, 52.3, 27.3 ppm. ESI HRMS: calcd. for C₃₃H₃₀NO₄⁺ [M-CF₃COO]⁺ 504.21746, found 504.2198.

8,9-bis(4-fluorophenyl)-2,3-dimethoxy-5,6-dihydroisoquinolino[1,2-

a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ac). A yellow solid (143.2 mg, 75% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.67 (d, J = 7.86, 1H), 7.96 (t, J = 7.80, 1H), 7.90 (t, J = 7.80, 1H), 7.68 (d, J = 7.80, 1H), 7.57 (m, 2H), 7.51 (s, 1H), 7.24 (m, 2H), 7.07-7.00 (m, 5H), 4.47 (s, 2H), 4.04 (s, 3H), 3.97 (s, 3H), 3.23 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 163.4 (d, J = 250.39 Hz), 162.6 (d, J = 247.71 Hz), 154.4, 148.5, 143.8, 139.0, 135.6, 135.4, 133.5, 133.0 (d, J = 8.55 Hz), 132.5 (d, J = 8.7 Hz), 130.9, 130.3, 129.9 (d, J = 4.83 Hz), 127.8, 127.0 (d, J = 4.5 Hz), 125.3, 119.2, 116.5 (d, J = 21.6 Hz), 116.3, 115.8 (d, J = 21.6 Hz), 110.7, 56.8, 56.7, 52.3, 27.3 ppm. ESI HRMS: calcd. for C₃₁H₂₄F₂NO₂⁺ [M-CF₃COO]⁺ 480.17749, found 480.1795.

3ad 8,9-bis(4-chlorophenyl)-2,3-dimethoxy-5,6-dihydroisoquinolino[1,2a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ad). A yellow solid (141.3 mg, 70% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.66 (d, J = 9.00, 1H), 7.96 (t, J = 7.20, 1H), 7.90 (t, J = 7.86, 1H), 7.65 (d, J = 9.00, 1H), 7.45 (m, 3H), 7.34-7.30 (m, 4H), 7.17 (m, 2H), 7.03 (s, 1H), 4.38 (t, J =6.00, 2H), 4.03 (s, 3H), 3.94 (s, 3H), 3.23 (t, J = 5.40, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.7, 154.5, 148.5, 143.2, 138.7, 136.7, 135.7, 135.0, 134.9, 133.5, 132.3, 132.0, 131.9, 130.8, 130.4, 130.0, 129.6, 129.1, 127.0, 125.2, 119.0, 116.1, 110.7, 56.7 52.3, 27.1 ppm. ESI HRMS: calcd. for C₃₁H₂₄Cl₂NO₂⁺ [M-CF₃COO]⁺ 512.11839, found 512.1198.

^{3ae} 8,9-bis(4-chlorophenyl)-2,3-dimethoxy-5,6-dihydroisoquinolino[1,2a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ae). A yellow solid (183.8 mg, 80% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.65 (d, J = 9.00, 1H), 7.95 (t, J = 7.86, 1H), 7.89 (t, J = 7.80, 1H), 7.64 (d, J = 8.40, 1H), 7.50 (m, 2H), 7.47-7.42 (m, 5H), 7.14-7.12 (m, 2H), 7.00 (s, 1H), 4.38 (t, J= 6.30 2H), 4.03 (s, 3H), 3.94 (s, 3H), 3.19 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 160.5, 160.2, 154.7, 154.5, 148.5, 143.1, 138.7, 135.7, 134.9, 133.3, 132.8, 132.6, 132.2, 132.0, 127.0, 125.2, 125.1, 123.2, 119.1, 116.2, 110.6, 56.7, 56.7, 52.2, 27.2 ppm. ESI HRMS: calcd. for C₃₁H₂₄Br₂NO₂+ [M-CF₃COO]⁺ 600.01747, found 600.0197.

8,9-dibutyl-2,3-dimethoxy-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-

ium 2,2,2-trifluoroacetate (3af). A yellow solid (165.1 mg, 99% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.50 (d, J = 8.46, 1H), 8.18 (d, J = 7.86, 1H), 8.06 (d, J = 8.1, 1H), 7.84 (t, J = 7.8, 1H), 7.21 (s, 1H), 7.14 s, 1H), 4.88 (s, 2H), 4.05 (s, 3H), 3.89 (s, 3H), 3.35 (m, 4H), 3.13(t, J = 8.46, 2H), 1.70-1.60 (m, 8H), 1.06-0.99 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.3, 153.1, 148.3, 145.5, 138.3, 135.5, 133.8, 133.5, 131.2, 129.4, 124.5, 124.2, 118.8, 115.9, 110.9, 56.7, 50.2, 32.4, 31.1, 29.6, 28.8, 27.3, 22.9, 13.9, 13.8 ppm. ESI HRMS: calcd. for C₂₇H₃₄NO₂⁺ [M-CF₃COO]⁺ 404.25893, found 404.2599.

8,9-dibutyl-2,3,11-trimethoxy-5,6-dihydroisoquinolino[1,2-

a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3bf). A yellow solid (167.8 mg, 95% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.38 (d, J = 10.14, 1H), 7.40 (d, J = 9.54, 1H), 7.32 (s, 1H), 7.14-7.13 (m, 2H), 4.74 (s, 2H), 4.07 (s, 3H), 4.00 (s, 3H), 3.88 (s, 3H), 3.32-3.25 (m, 4H), 3.06 (t, J = 8.52, 2H)), 1.68 (m, 4H), 1.60-1.55 (m, 4H), 1.03-1.01 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 165.1, 153.9, 151.8, 148.2, 145.4, 140.9, 133.6, 133.2, 131.5, 121.6, 119.5, 118.8, 115.6, 110.9, 103.1, 56.7, 56.3, 49.5, 31.6, 31.0, 29.6, 28.7, 27.4, 23.2, 22.9, 13.9, 13.8 ppm. ESI HRMS: calcd. for C₂₈H₃₆NO₃⁺ [M-CF₃COO]⁺ 434.26950, found 434.2699.

8,9-dibutyl-11-fluoro-2,3-dimethoxy-5,6-dihydroisoquinolino[1,2-

alisoquinolin-7-ium 2,2,2-trifluoroacetate (3df). A yellow solid (162.7 mg, 94% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.54 (q, J = 7.2, 1H), 7.72 (d, J = 7.92, 1H), 7.56 (t, J = 8.1, 1H), 7.15-7.12 (m, 2H), 4.84 (s, 2H), 4.04 (s, 3H), 3.88 (s, 3H), 3.34-3.30 (m, 4H), 3.04 (t, J = 8.1, 2H)), 1.67-1.59 (m, 8H), 1.05-1.01 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 166.5 (d, J = 260.86 Hz), 154.5, 153.1, 148.4, 146.4, 140.8 (d, J = 11.2 Hz), 135.0 (d, J = 10.2 Hz), 134.0, 132.6 (d, J = 5.7 Hz), 121.7, 120.0 (d, J = 25.8 Hz), 119.7, 115.7, 110.9, 108.6 (d, J = 22.3 Hz), 56.6, 50.0, 32.1, 30.9, 29.7, 29.0, 27.2, 23.3, 22.9, 13.9, 13.8 ppm. ESI HRMS: calcd. for C₂₇H₃₃FNO₂⁺ [M-CF₃COO]⁺ 422.24951, found 422.2508.

8,9-dibutyl-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3qf). A yellow solid (125.3 mg, 85% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.42 (d, *J* = 7.86, 1H), 8.18 (d, *J* = 9.06, 1H), 8.08 (m, 1H), 7.82 (t, *J* = 7.86, 1H), 7.74 (d, *J* = 7.26, 1H), 7.63 (m, 1H), 7.54-7.50 (m, 2H), 4.89 (s, 2H), 3.34 (s, 4H)), 3.12 (t, *J* = 7.56, 8H), 1.67-1.54 (m, 8H), 0.99-0.97 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 153.0, 145.6, 138.6, 138.2, 136.0, 135.0, 133.7, 133.0, 131.0, 130.1, 129.8, 128.0, 127.5, 126.6, 124.5, 124.2, 50.3, 32.3, 30.9, 29.5, 29.1, 28.8, 27.7, 23.2, 22.8, 13.7, 13.7 ppm. ESI HRMS: calcd. for C₂₅H₃₀N⁺ [M-CF₃COO]⁺ 344.23781, found 344.2398.

8,9-dibutyl-11-methoxy-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-ium 2,2,2trifluoroacetate (3of). A yellow solid (143.2 mg, 91% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.35 (d, *J* = 9.60, 1H), 7.70 (d, *J* = 7.80, 1H), 7.63 (t, *J* = 7.20, 1H), 7.55-7.50 (m, 2H), 7.42 (d, *J* = 9.60, 1H), 7.34 (d, *J* = 2.40, 1H), 4.77 (s, 2H), 4.07 (s, 3H)), 3.29 (m, 4H), 3.07 (t, *J* = 7.80, 2H), 1.70-1.56 (m, 8H),1.05-0.99 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 165.3, 151.7, 145.8, 141.0, 138.7, 133.5, 133.3, 132.8, 128.1, 127.6, 126.8, 122.3, 119.9, 103.0, 56.3, 49.7, 31.6, 31.0, 29.6, 28.9, 28.0, 23.2, 22.9, 13.8, 13.8 ppm. ESI HRMS: calcd. for C₂₆H₃₂NO⁺ [M-CF₃COO]⁺ 374.24837, found 374.2499.

8,9-dibutyl-11-methoxy-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-ium 2,2,2trifluoroacetate (3pf). A yellow solid (143.8 mg, 89% yield). ¹H NMR (600 MHz, CDCl₃): δ 9.03 (d, *J* = 2.40, 1H), 8.65 (d, *J* = 9.60, 1H), 8.47 (d, *J* = 9.60, 1H), 7.75-7.70 (m, 2H), 7.59-7.56 (m, 2H), 5.01 (s, 2H), 3.42 (m, 4H)), 3.23 (m, 2H), 1.74 (m, 4H), 1.63 (m, 4H), 1.08-1.02 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.0, 150.9, 148.7, 139.0, 138.5, 136.8, 134.6, 134.1, 133.2, 128.2, 128.0, 127.1, 126.6, 122.5, 120.0, 51.0, 32.7, 30.8, 30.0, 29.3, 27.5, 23.2, 23.0, 13.8 ppm. ESI HRMS: calcd. for C₂₅H₂₉N₂O₂+ [M-CF₃COO]⁺ 389.22288, found 389.2253.

8,9-dibutyl-2-methoxy-5,6-dihydroisoquinolino[1,2-a]isoquinolin-7-ium 2,2,2trifluoroacetate (3rf). A yellow solid (154.2 mg, 98% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.54 (d, *J* = 8.40, 1H), 8.21 (d, *J* = 8.40, 1H), 8.10 (t, *J* = 7.86, 1H), 7.83 (t, *J* = 7.20, 2H), 7.50 (d, *J* = 7.80 1H), 7.27 (m, 1H), 7.21 (m, 1H), 4.90 (s, 2H), 3.86 (s, 3H), 3.37-3.29 (m, 4H), 3.16 (t, *J* = 8.40, 2H), 1.70-1.59 (m, 8H), 1.05-0.98 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 158.6, 153.0, 146.0, 138.4, 135.6, 131.1, 130.6, 129.9, 127.5, 124.7, 124.2, 118.9, 56.0, 51.0, 49.5, 32.4, 31.0, 29.6, 28.9, 27.0, 23.3, 22.9, 13.9, 13.8 ppm. ESI HRMS: calcd. for C₂₆H₃₂NO⁺ [M-CF₃COO]⁺ 374.24837, found 374.2497.

2,3-dimethoxy-9-phenyl-8-propyl-5,6-dihydroisoquinolino[1,2-

a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ag). A yellow solid (165.6 mg, 95% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.64 (d, J = 7.80, 1H), 8.26 (d, J = 7.20, 1H), 8.15 (m, 1H), 7.93 (m, 1H), 7.65 (s, 3H), 7.51 (s, 2H), 7.37 (s, 1H), 7.11 (s, 1H), 4.28 (s, 2H), 4.03 (s, 3H), 3.93 (s, 3H), 3.20 (s, 2H), 2.78 (t, J = 7.80, 2H), 1.52 (d, J = 6.66, 2H), 0.88 (t, J = 7.20, 8H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.4, 153.2, 148.4, 138.2, 135.8, 134.8, 131.8, 131.4, 131.0, 130.2, 130.1, 129.7, 125.2, 125.0, 118.8, 116.0, 111.0, 56.8, 52.4, 31.9, 27.1, 23.9, 14.6 ppm. ESI HRMS: calcd. for C₂₈H₂₈NO₂⁺ [M-CF₃COO]⁺ 410.21199, found 410.2135.

inolino[1,2-a]isoquinolin-7-ium 2,2,2-trifluoroacetate (3ah). A yellow solid (155.0 mg, 97% yield). ¹H NMR (600 MHz, CDCl₃): δ 8.62 (d, *J* = 7.86, 1H), 8.27 (d, *J* = 8.40, 1H), 8.16 (d, *J* = 6.60, 1H), 7.93 (t, *J* = 7.20 1H), 7.63 (s, 3H), 7.50 (s, 2H), 7.37 (s, 1H), 7.06 (s, 1H), 4.29 (s, 2H), 4.03 (s, 3H), 3.93 (s, 3H), 3.14 (s, 2H), 2.47 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 154.3, 153.1, 148.4, 143.6, 138.8, 135.9, 133.1, 132.0, 131.1, 131.0, 130.5, 130.4, 130.2, 129.6, 125.0, 124.7, 118.8, 116.0, 110.8 56.7, 52.4, 27.1, 16.7 ppm. ESI HRMS: calcd. for C₂₆H₂₄NO₂⁺ [M-CF₃COO]⁺ 382.18069, found 382.1823.

2-(2,3-dimethoxyphenethyl)-3,4-diphenylisoquinolin-2-ium 2,2,2-trifluoroacetate (5aa). A light yellow solid (99.3 mg, 55% yield). ¹H NMR (600 MHz, CDCl₃): δ 11.26 (s, 1H), 8.84 (s, 1H), 8.00 (t, *J* = 8.40, 1H), 7.93 (t, *J* = 7.20, 1H), 7.62 (d, *J* = 8.40 1H), 7.42-7.37 (m, 3H), 7.31 (m, 3H), 7.18 (d, *J* = 7.20, 2H), 7.07 (m, 2H), 6.62-6.21 (m, 2H), 6.30 (m, *J* = 8.40, 1H), 4.96 (s, 2H), 3.77 (s, 3H), 3.75 (s, 3H), 3.12 (s, 2H), 1.70-1.59 (m, 8H), 1.05-0.98 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 152.7, 149.3, 148.3, 143.6, 139.2, 137.6, 137.4, 133.2, 131.2, 130.8, 130.6, 130.4, 129.0, 128.7, 127.9, 126.1, 120.8, 112.2, 111.3, 60.4, 56.0, 37.6 ppm. ESI HRMS: calcd. for C₃₁H₂₈NO₂⁺446.21199, found 446.2135.

2,3,4-triphenylisoquinolin-2-ium 2,2,2-trifluoroacetate (5ba). A white solid (76.2 mg, 50% yield). ¹H NMR (600 MHz, CDCl₃): δ 10.60 (s, 1H), 8.93 (s, 1H), 8.07 (t, *J* = 7.80, 1H), 8.00 (s, 1H), 7.77 (d, *J* = 9.00 1H), 7.55 (s, 2H), 7.36-7.33 (m, 6H), 7.22-7.20 (m, 2H), 7.09-7.01 (m, 5H), 6.62-6.21 (m, 2H), 6.30 (m, *J* = 8.40, 1H), 4.96 (s, 2H), 3.77 (s, 3H), 3.75 (s, 3H), 3.12 (s, 2H), 1.70-1.59 (m, 8H), 1.05-0.98 (m, 6H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 152.7, 144.1, 142.2, 139.0, 138.5, 138.0, 133.2, 132.8, 131.4, 131.2, 130.6, 130.4, 129.7, 129.4, 128.9, 128.7, 128.1, 126.9, 126.4 ppm. ESI HRMS: calcd. for C₂₇H₂₀N⁺ [M-CF₃COO]⁺ 358.15956, found 358.1611.

2-benzyl-3,4-diphenylisoquinolin-2-ium 2,2,2-trifluoroacetate (5ca). A white solid (109.5 mg, 70% yield). ¹H NMR (600 MHz, CDCl₃): δ 11.29 (s, 1H), 8.91 (d, J = 8.40, 1H), 8.01 (t, J = 7.80, 1H), 7.96 (t, J = 7.80, 1H), 7.64 (d, J = 8.40 1H), 7.32 (t, J = 7.20, 1H), 7.28-7.26 (m, 3H), 7.25-7.22 (m, 3H), 7.21-7.18 (m, 2H), 7.06-7.05 (m, 2H), 7.01 (s, 1H), 7.00 (s, 1H), 6.90 (s, 1H), 6.89 (s, 1H), 6.06 (s, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ 153.1, 144.1, 139.6, 138.0, 137.5, 133.6, 133.2, 132.5, 131.2, 130.8, 130.7, 130.2, 130.1, 129.2, 129.1, 128.8, 128.7, 128.6, 128.3, 127.6, 126.3, 63.1 ppm. ESI HRMS: calcd. for C₂₈H₂₂N⁺ [M-CF₃COO]⁺ 372.17521, found 372.1767.

5. Reference

1. Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A., *Org. Lett.* 2002, **4**, 3199.

2. Perez, M.; Wu, Z.; Scalone, M.; Ayad, T.; Ratovelomanana-Vidal, V., *Eur. J. Org. Chem.* 2015, **2015**, 6503.

6. NMR Spectra

MeO CF₃COŌ MeO Ph Ph

S34

3qf

1.5 1.4 1.3 1.2 1.0 0.9 0.8 0.7 9.0 8.01 00 0.5 2.08 3.00 L.01 T 0.4 0.3 0.2 abundance 0 0.1 9.0 6.0 2.0 1.0 0 -1.0 7.0 8.0 5.0 4.0 3.0 3.298 3.088 3.075 3.061 1.703 1.680 1.566 1.566 1.566 1.016 1.016 1.016 0.992 8.359 8.343 7.709 7.696 7.634 7.5517 4.773 4.076 X : parts per Million : Proton

7. Crystal Data

Empirical formula	$C_{34}H_{28}F_{3}NO_{5}$
Formula weight	587.57
Temperature/K	293.15
Crystal system	triclinic
Space group	P-1
a/Å	10.8707(6)
b/Å	12.3194(7)
c/Å	13.1341(8)
$\alpha/^{\circ}$	87.958(5)
β/°	74.654(5)
γ/°	70.533(5)
Volume/Å ³	1596.56(17)
Z	2
$\rho_{calc}g/cm^3$	1.222
μ/mm^{-1}	0.093
F(000)	612.0
Crystal size/mm3	$0.35\times0.3\times0.25$
Index ranges	$\text{-10} \le h \le 13, \text{-15} \le k \le 14, \text{-16} \le l \le 16$
Reflections collected	12890
Independent reflections	6531 [$R_{int} = 0.0206, R_{sigma} = 0.0439$]
Data/restraints/parameters	6531/0/401
Goodness-of-fit on F ²	1.113
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0680, wR_2 = 0.2025$

Table S3. Crystal data and structure refinement for 3ba

Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ $R_1 = 0.1069, wR_2 = 0.2310$ 0.37/-0.33

			Lengens IVI	004	
Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.353(3)	C18	C19	1.354(3)
01	C10	1.423(4)	C18	C21	1.491(3)
O2	C2	1.351(3)	C19	C27	1.493(3)
O2	C11	1.428(3)	C21	C22	1.353(4)
O3	C15	1.360(3)	C21	C26	1.355(4)
O3	C20	1.415(3)	C22	C23	1.385(4)
N1	C5	1.348(3)	C23	C24	1.343(5)
N1	C6	1.472(3)	C24	C25	1.356(6)
N1	C19	1.394(3)	C25	C26	1.393(5)
C1	C2	1.405(3)	C27	C28	1.362(3)
C1	С9	1.380(3)	C27	C32	1.371(4)
C2	C3	1.374(3)	C28	C2	1.390(4)
C3	C4	1.406(3)	C29	C30	1.366(5)
C4	C5	1.465(3)	C30	C3	1.364(5)
C4	C8	1.386(3)	C31	C32	1.378(4
C5	C12	1.420(3)	O4	C33	1.210(4)
C6	C7	1.473(4)	O5	C33	1.207(4)
C7	C8	1.481(3)	C33	C34	1.518(5)
C8	С9	1.387(3)	C34	F	1.347(5)
C12	C13	1.402(3)	C34	F2	1.331(6)
C12	C17	1.419(3	C34	F3	1.316(6)
C13	C14	1.364(3)	C34	F1A	1.278(15)
C14	C15	1.393(3)	C34	F2A	1.083(17)
C15	C16	1.361(3)	C34	F3A	1.438(13)
C16	C17	1.405(3)	F1A	F3A	1.75(2)
C17	C18	1.431(3)			

Table S4. Bond Lengths for 3ba

Table S5. Bond Angles for 3ba

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	O1	C10	117.2(2)	C19	C18	C17	119.0(2)
C2	02	C11	117.42(19)	C19	C18	C21	121.4(2)
C15	03	C20	118.4(2)	N1	C19	C27	116.57(19)
C5	N1	C6	119.10(19)	C18	C19	N1	120.6(2)
C5	N1	C19	122.22(18)	C18	C19	C27	122.8(2)
C19	N1	C6	118.67(18)	C22	C21	C18	122.1(3)

01	C1	C2	115.2(2)	C22	C21	C26	118.5(3)
01	C1	C9	125.0(2)	C26	C21	C18	119.4(2)
C9	C1	C2	119.7(2)	C21	C22	C23	121.2(3)
02	C2	C1	115.1(2)	C24	C23	C22	120.3(3)
02	C2	C3	125.2(2)	C23	C24	C25	119.4(3)
C3	C2	C1	119.7(2)	C24	C25	C26	120.3(4)
C2	C3	C4	120.6(2)	C21	C26	C25	120.4(3)
C3	C4	C5	121.7(2)	C28	C27	C19	122.0(2)
C8	C4	C3	119.3(2)	C28	C27	C32	119.1(3)
C8	C4	C5	118.8(2)	C32	C27	C19	118.9(2)
N1	C5	C4	117.48(19)	C27	C28	C29	120.5(3)
N1	C5	C12	118.32(19)	C30	C29	C28	119.5(3)
C12	C5	C4	124.2(2)	C31	C30	C29	120.5(3)
N1	C6	C7	112.1(2)	C30	C31	C32	119.4(3)
C6	C7	C8	109.6(2)	C27	C32	C31	120.9(3)
C4	C8	C7	116.4(2)	O4	C33	C34	113.6(3)
C4	C8	C9	120.1(2)	05	C33	O4	131.4(4)
C9	C8	C7	123.5(2)	05	C33	C34	115.0(4)
C1	C9	C8	120.6(2)	F1	C34	C33	113.1(3)
C13	C12	C5	122.5(2)	F2	C34	C33	116.5(4)
C13	C12	C17	118.3(2)	F2	C34	F1	97.6(4)
C17	C12	C5	119.0(2)	F3	C34	C33	110.6(4)
C14	C13	C12	121.6(2)	F3	C34	F1	100.5(4)
C13	C14	C15	119.5(2)	F3	C34	F2	116.7(4)
03	C15	C14	123.3(2)	F1A	C34	C33	122.1(6)
O3	C15	C16	115.8(2)	F1A	C34	F3A	80.2(9)
C16	C15	C14	120.9(2)	F2A	C34	C33	124.1(11)
C15	C16	C17	120.6(2)	F2A	C34	F1A	107.4(12)
C12	C17	C18	119.2(2)	F2A	C34	F3A	107.0(11)
C16	C17	C12	118.9(2)	F3A	C34	C33	105.5(5)
C16	C17	C18	121.9(2)	C34	F1A	F3A	53.9(6)
C17	C18	C21	119.6(2)	C34	F3A	F1A	45.9(7)