Supplementary Information

Cobalt doped iron oxide nanozyme as a highly active peroxidase for

renal tumor catalytic therapy

Yixuan Wang¹, Hongjun Li^{2*}, Lihua Guo¹, Qi Jiang¹, Feng Liu¹

1. Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.

2. The Examination Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.

Figure S1 EDX spectrum of the Fe_3O_4 (A) and Co@ Fe_3O_4 (B) nanozymes.

Figure S2 Scanning electron microscope (SEM) and Dynamic light scattering (DLS) analysis of Fe_3O_4 (A, C) and $Co@Fe_3O_4$ (B, D) nanozymes.

Element	Wt %	At %
0	23.26	50.29
Fe	49.07	33.48
Со	27.67	16.23

Table S1 Elemental quantification of Co@ Fe₃O₄ by XPS spectra.

Table S2 Comparison of the apparent Michaelis-Menton constant (K_M) and maximum initial reaction rate (V_{max}) of the Co@Fe₃O₄ nanozyme with other Fe₃O₄ based nanozymes.

Fe ₃ O ₄ based nanozyme	Substrate	$K_{\rm M}$ (mM)	<i>V</i> max (M s ⁻¹)	References
and size (diameter)				
Fe ₃ O ₄ , 300 nm	H ₂ O ₂	154	9.78×10-8	1
	TMB	0.098	3.44x10 ⁻⁸	
Fe ₃ O ₄ , 13 ± 3.5 nm	H ₂ O ₂	54.6	1.8×10^{-8}	2
	TMB	0.374	2.6×10^{-8}	
GO-Fe ₃ O ₄	H ₂ O ₂	0.71	5.31×10 ⁻⁸	3
	TMB	0.43	13.08×10 ⁻⁸	
Fe ₃ O ₄ @Pt	H ₂ O ₂	702.6	7.136×10 ⁻⁷	4

	TMB	0.147	0.711×10 ⁻⁷	
Fe ₃ O ₄ @Carbon, 120 nm	H ₂ O ₂	0.38	73.99×10 ⁻⁸	5
	TMB	0.072	17.99×10 ⁻⁸	
Magnetosome	H ₂ O ₂	170.65	9.33×10 ⁻⁹	6
	TMB	0.90	4.45×10 ⁻⁹	
Fe ₃ O ₄ @Cu@Cu ₂ O, 50 nm	H ₂ O ₂	2.3	11.9× 10 ⁻⁸	7
	OPDA	0.85	13.2× 10 ⁻⁸	
Mn _{0.5} Fe _{0.5} Fe ₂ O ₄ , 10-11nm	H_2O_2	310	3.63×10 ⁻⁶	8
	TMB	0.139	4.5×10 ⁻⁶	
PB- γ -Fe ₂ O ₃ , 9.8 nm	H ₂ O ₂	323.6	1.17× 0 ⁻⁶	9
	TMB	0.307	1.06×10^{-6}	
PB-Fe ₂ O ₃ , 46 nm	H_2O_2	0.015×10 ⁻³	2.28×10 ⁻⁷	10
	TMB	9.95×10 ⁻³	1.23×10 ⁻⁷	
PB-Fe ₂ O ₃	H ₂ O ₂	91.54	8.308×0^{-8}	11
	3,5-DTBC	1.22	4.431×0^{-8}	
γ-Fe ₂ O ₃ , 122.4 nm	H ₂ O ₂	21.14	1.319×10 ⁻⁹	12
	TMB	0.1709	2.647×10 ⁻⁹	
γ-Fe ₂ O ₃ , 20-50 nm	H_2O_2	157.19	1.284×10 ⁻⁸	13
	TMB	0.0887	0.97× 10 ⁻⁸	
GO-Fe ₂ O ₃	H ₂ O ₂	305	1.01× 10 ⁻⁷	14
	TMB	0.118	5.38× 10 ⁻⁸	
$Pd@\gamma-Fe_2O_3$	H_2O_2	0.254	1.28× 10 ⁻⁷	15
	ABTS	0.049	1.02×10^{-8}	
Co@Fe ₃ O ₄ , 95 nm	H ₂ O ₂	0.19	71.5×10^{-8}	This study
	TMB	1.17	37.9×10^{-8}	

References :

- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, *Nat Nanotechnol*, 2007, 2, 577-583.
- 2. N. V. Vallabani, A. S. Karakoti and S. Singh, Colloids Surf B Biointerfaces, 2017, 153, 52-60.
- Y. L. Dong, H. G. Zhang, Z. U. Rahman, L. Su, X. J. Chen, J. Hu and X. G. Chen, *Nanoscale*, 2012, 4, 3969-3976.
- 4. M. Ma, J. Xie, Y. Zhang, Z. Chen and N. Gu, *Mater Lett*, 2013, **105**, 36-39.
- 5. Q. An, C. Sun, D. Li, K. Xu, J. Guo and C. Wang, Acs Appl Mater Inter, 2013, 5, 13248-13257.
- 6. K. Li, C. Chen, C. Chen, Y. Wang, Z. Wei, W. Pan and T. Song, *Enzyme Microb Tech*, 2015, **72**, 72-78.
- 7. Z. Wang, M. Chen, J. Shu and Y. Li, *J Alloy Compd*, 2016, **682**, 432-440.
- 8. D. Bhattacharya, A. Baksi, I. Banerjee, R. Ananthakrishnan, T. K. Maiti and P. Pramanik, *Talanta*, 2011, **86**, 337-348.
- X.-Q. Zhang, S.-W. Gong, Y. Zhang, T. Yang, C.-Y. Wang and N. Gu, *J Mater Chem*, 2010, 20, 5110-5116.
- 10. A. K. Dutta, S. K. Maji, D. N. Srivastava, A. Mondal, P. Biswas, P. Paul and B. Adhikary,

Journal of Molecular Catalysis A: Chemical, 2012, 360, 71-77.

- A. K. Dutta, S. K. Maji, P. Biswas and B. Adhikary, *Sensors and Actuators B: Chemical*, 2013, 177, 676-683.
- 12. Q. Liu, L. Zhang, H. Li, Q. Jia, Y. Jiang, Y. Yang and R. Zhu, *Materials Science and Engineering: C*, 2015, **55**, 193-200.
- 13. A. Roy, R. Sahoo, C. Ray, S. Dutta and T. Pal, *RSC Advances*, 2016, 6, 32308-32318.
- 14. L. Song, C. Huang, W. Zhang, M. Ma, Z. Chen, N. Gu and Y. Zhang, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2016, **506**, 747-755.
- M. Kluenker, M. Nawaz Tahir, R. Ragg, K. Korschelt, P. Simon, T. E. Gorelik, B. Barton, S. I. Shylin, M. Panthöfer, J. Herzberger, H. Frey, V. Ksenofontov, A. Möller, U. Kolb, J. Grin and W. Tremel, *Chem Mater*, 2017, 29, 1134-1146.