Supporting information

Direct Conversion of C6 Sugars to Methyl Glycerate and Glycolate in

Methanol

Lei Feng, Gang Li, Yueer Yan, Wenrong Hou, Yahong Zhang* and Yi Tang* Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (*i*ChEM), Fudan University, Shanghai 200433, China

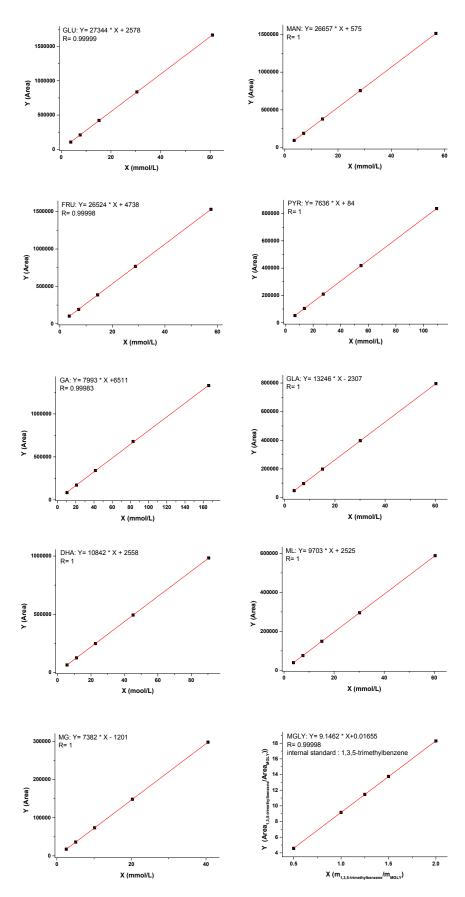


Fig. S1. Standard curves of all substrates and products

Table S1

Cat	t.	Conv.	Product	yield (C mol%)	Carbon
Cat.	(h)	(mol%)	Others	MG	balance (mol%)
Pt/C	1	15.8	3.0	6.1	93.3
	2	31.9	13.7	7.4	89.2
Pd/C	1	45.3	5.8	33.6	94.1
	2	51.4	2.9	36.2	87.7
Ru/C	1	9.1	4.9	0	95.8
	2	16.2	7.6	0	91.4
Au/TiO ₂	0.5	97.4	9.6	82.7	94.9
	1	98.8	5.5	84.8	91.5

Conversion of GA to MG catalyzed by different catalyst.

Reaction condition: 50 mg of GA, 5 g of methanol, 100 mg of catalyst, 393 K, 1 MPa O_2 . Yields of MG and others are calculated by carbon atom yield from GA. Carbon balance is calculated by $[1 - Conv. + Y_{\cdot MG} + Y_{\cdot Others}] \times 100\%$, others: FRU, PYR, DHA.

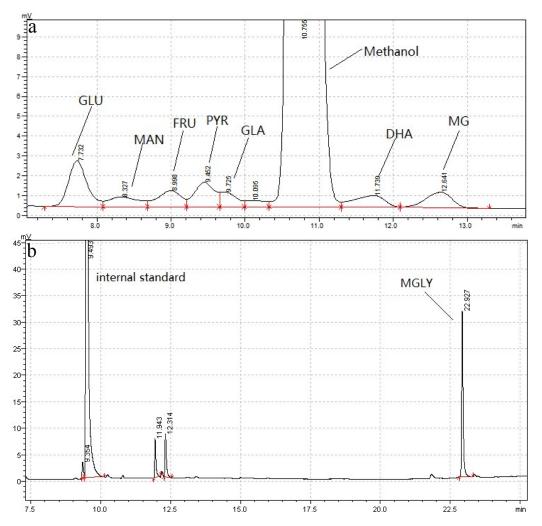


Fig. S2. HPLC (a) and GC (b) chromatograms of the reaction mixture of FRU in the presence of MoO_3 and Au/TiO_2 . (reaction conditions: 50 mg of FRU, 5 g of methanol, 50 mg of MoO_3 , 100 mg of Au/TiO_2 and 3 mg of K_2CO_3 , 363 K, 1 MPa O_2 , 5 h). Internal standard: 1,3,5-trimethylbenzene.

Т.	t.	Conv. _{Retro-}	Produc	- Carbon				
(K)	(h)	aldol (mol%)	GLA	DHA	PYR+ML	MG	MGLY	balance (mol%)
353	5	73.9	3.1	7.7	9.6	5.4	22.3	74.2
363	1	45.7	2.2	5.2	7.3	3.9	9.8	82.7
	3	72.4	3.6	7.1	7.6	7.1	20.9	73.9
	5	85.3	2.4	8.9	9.1	7.7	27.6	70.4
	6	87.2	1.7	8.2	10.7	7.8	27.4	68.6

Results and product distributions of FRU conversion in the presence of MoO_3 and Au/TiO_2 .

Reaction condition: 50 mg of FRU, 5 g of methanol, 50 mg of MoO₃, 100 mg of Au/TiO₂ and 3 mg of K₂CO₃, 1 MPa O₂. Yields (Y.) of all products are calculated by carbon atom yield from FRU. Carbon balance is calculated by $[1 - \text{Conv.}_{\text{Retro-aldol}} + Y._{\text{GLA}} + Y._{\text{DHA}} + Y._{\text{PYR+ML}} + Y._{\text{MG}} + Y._{\text{MGLY}}] \times 100\%$.

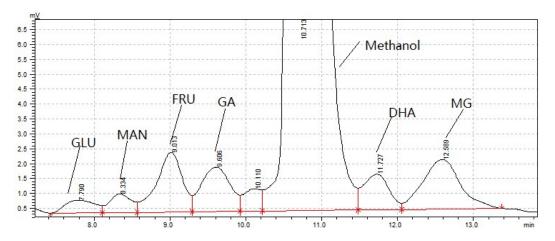


Fig. S3. HPLC chromatogram of the reaction mixture of MAN in the presence of MoO_3 and Au/TiO_2 . (reaction conditions: 50 mg of MAN, 5 g of methanol, 37.5 mg of MoO_3 , 80 mg of Au/TiO_2 , 393 K, 1 MPa O_2 , 5 h).

Results and product distributions of MAN/GLU conversion in the presence of MoO ₃
and Au/TiO ₂ .

Substrate	Τ.	t.	Conv. _{Retro-aldol}	Produc	et yield (C	mol%)	Carbon
Substrate	(K)	(h)	(mol%)	GA	DHA	MG	balance (mol%)
MAN ^a	373	1	22.8	3.8	2.2	11.9	95.1
		2	41.9	8.9	3.1	21.4	91.5
		3	53.8	11.2	4.8	27.2	89.4
		4	55.2	5.2	7.5	31.2	88.7
		5	55.8	2.1	8.9	32.3	87.5
MAN ^b	393	1	72.5	17.2	9.1	24.2	78.0
		2	77.8	10.5	9.4	32.7	74.8
		3	79.7	8.2	9.2	36.2	73.9
		4	80.2	4.0	8.8	39.2	71.8
		5	80.3	3.7	8.9	38.4	70.7
GLU ^c	393	1	39.5	3.9	2.5	14.2	81.1
		2	50.8	4.9	5.0	18.8	77.9
		3	52.5	4.3	6.3	19.6	77.7
		4	54.2	3.1	4.4	21.0	74.3
		5	56.9	4.3	3.1	20.7	71.2

Reaction conditions ^a: 50 mg of MAN, 5 g of methanol, 50 mg of MoO₃, 100 mg of Au/TiO₂, 1 MPa O₂. Reaction conditions ^b: 50 mg of MAN, 5 g of methanol, 37.5 mg of MoO₃, 80 mg of Au/TiO₂, 1 MPa O₂. Reaction conditions ^c: 50 mg of GLU, 5 g of methanol, 50 mg of MoO₃, 100 mg of Au/TiO₂, 1 MPa O₂. Yields (Y.) of all products are calculated by carbon atom yields from the original hexoses. Carbon balance is calculated by $[1 - \text{Conv}_{\cdot\text{Retro-aldol}} + Y_{\cdot\text{MG}} + Y_{\cdot\text{GA}} + Y_{\cdot\text{DHA}}] \times 100\%$.

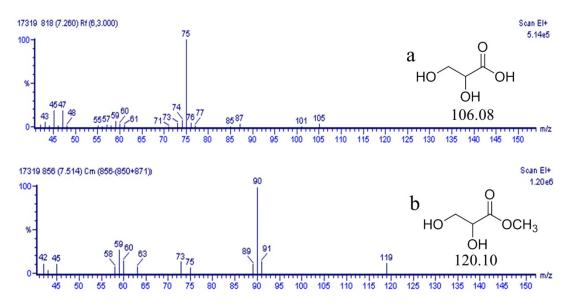


Fig. S4. GC-MS spectra of products from the conversion of FRU to MGLY. (a) glyceric acid, (b) MGLY.

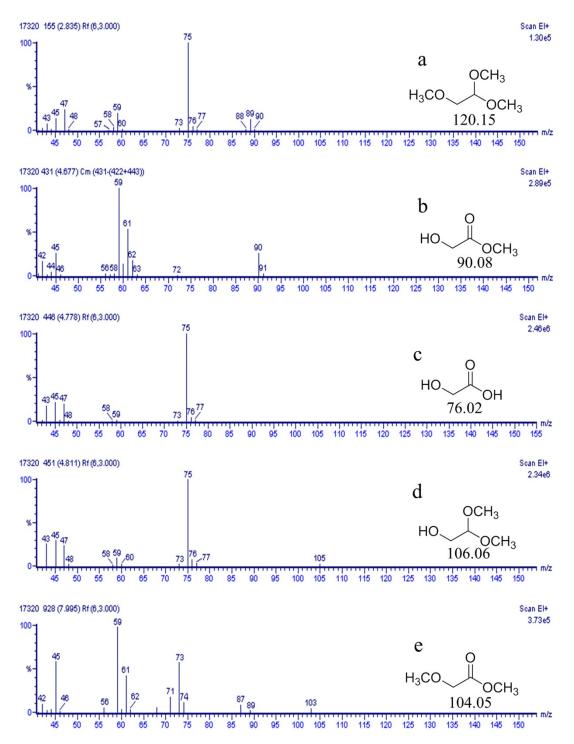


Fig. S5. GC-MS spectra of products from the conversion of MAN to MG. (a) 1,1,2trimethoxyethane, (b) MG, (c) glycolic acid, (d) 2,2-dimethoxyethanol, (e) methyl methoxyglycolate.

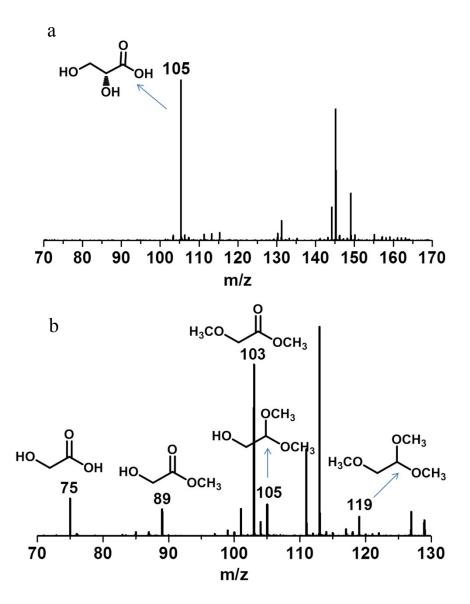


Fig. S6. MS spectra of the reaction solution of FRU (a) and MAN (b) conversion in methanol. Reaction conditions: (a) 50 mg of FRU, 5 g of methanol, 50 mg of MoO₃, 100 mg of Au/TiO₂ and 3 mg of K₂CO₃, 363 K, 1 MPa O₂, 4 h; Reaction conditions : (b) 50 mg of MAN, 5 g of methanol, 37.5 mg of MoO₃, 80 mg of Au/TiO₂, 393 K, 1 MPa O₂, 3 h.

T.	t.	Conv. _{Retro-}	Product yield (C mol%)		Carbon
(K)	(h)	aldol	PYR+ML+DHA	GLA	balance (mol%)
		(mol%)			
353	1	17.2	0.0	0.8	83.6
	2	24.0	0.0	2.2	78.2
	3	33.8	0.0	3.5	69.7
363	1	30.7	8.2	2.8	80.3
	2	45.8	14.2	3.3	71.7
	3	47.6	12.7	3.3	68.4
373	1	40.2	11.1	4.8	75.7
	2	49.8	14.2	5.3	69.7
	3	52.5	13.9	5.2	66.6

Conversion of FRU to GLA in methanol under different temperature.

Reaction condition: 50 mg of FRU, 5 g of methanol, 50 mg of MoO₃. Yields of products are calculated by carbon atom yield from FRU. Carbon balance is calculated by $[1 - \text{Conv}_{.\text{Retro-aldol}} + \text{Y}_{.\text{GLA}} + \text{Y}_{.\text{PYR}+\text{ML}+\text{DHA}}] \times 100\%$.

T.	t.	Conv.	Product yi	eld (C mo	Carbon	
(K)	(h)	(mol%)	Others	DHA	MGLY	balance (mol%)
353	1	68.8	14.1	9.3	40.9	95.5
	2	89.7	23.0	8.1	44.8	86.2
_	3	94.3	26.5	6.5	44.5	83.2
363	1	79.1	23.9	7.9	41.3	94.0
	2	92.0	30.9	7.7	46.1	92.7
	3	96.1	32.2	6.1	47.3	89.5
373	1	88.1	35.6	3.2	41.5	92.2
	2	94.6	37.1	2.3	45.3	90.1
	3	98.2	37.9	0.8	48.2	88.7

Conversion of GLA to MGLY in methanol under different temperature.

Reaction condition: 50 mg of GLA, 5 g of methanol, 100 mg of Au/TiO₂, 1 MPa O₂. Yields of products are calculated by carbon atom yield from GLA. Carbon balance is calculated by $[1 - \text{Conv.} + \text{Y}_{\cdot\text{MGLY}} + \text{Y}_{\cdot\text{DHA}} + \text{Y}_{\cdot\text{Others}}] \times 100\%$, others: GLU, MAN, FRU, PYR, ML, MG.

Τ.	t.	Conv. _{Retro-aldol}	Yield of GA	Carbon
(K)	(h)	(mol%)	(C mol%)	balance (mol%)
373	1	10.3	3.7	93.4
	2	25.4	17.2	91.8
	3	39.1	30.1	91.0
393	1	71.2	45.4	74.2
	2	73.6	38.6	65.0
	3	75.2	36.9	61.7

Direct conversion of MAN to GA in methanol under different temperature.

Reaction condition: 50 mg of MAN, 5 g of methanol, 50 mg of MoO₃. Yield of GA is calculated by carbon atom yield from MAN. Carbon balance is calculated by $[1 - Conv._{Retro-aldol} + Y._{GA}] \times 100\%$.

T.	t.	Conv.	Product yie	eld (C mol%)	Carbon
(K)	(h)	(mol%)	Others	MG	balance (mol%)
353	1	82.3	8.4	71.6	97.7
	2	95.4	9.3	78.2	92.1
	3	98.8	8.7	80.9	90.8
373	1	95.7	7.9	86.9	99.1
	2	96.3	4.9	88.7	97.3
	3	99.1	4.6	90.2	95.7
393	0.5	97.4	9.6	82.7	94.9
	1	98.8	5.5	84.8	91.5
	1.5	98.8	5.3	81.1	87.6
413	0.5	98.2	6.9	78.3	87.0
	1	99.7	2.1	72.4	74.8
	1.5	100.0	0.0	68.7	68.7

Conversion of GA to MG under different temperature.

Reaction condition: 50 mg of GA, 5 g of methanol, 100 mg of Au/TiO₂, 1 MPa O₂. Yields of MG and others are calculated by carbon atom yield from GA. Carbon balance is calculated by $[1 - \text{Conv.} + \text{Y}_{.MG} + \text{Y}_{.Others}] \times 100\%$, others: FRU, PYR, DHA.

Conversion of MAN to Mid catalyzed by MidO3.							
t.	Conv. _{Retro-aldol}	Product	yield (C	Carbon			
(h)	(mol%)	DHA	GA	MG	balance (mol%)		
1	65.2	3.4	39.7	0.9	78.8		
3	73.6	5.5	32.6	2.8	77.3		
5	77.5	8.4	29.7	8.9	69.5		
9	92.9	8.3	17.3	10.8	43.5		
	t. (h) 1 3 5	t.Conv. _{Retro-aldol} (h)(mol%)165.2373.6577.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t. Conv. _{Retro-aldol} Product yield (C mol%) (h) (mol%) DHA GA MG 1 65.2 3.4 39.7 0.9 3 73.6 5.5 32.6 2.8 5 77.5 8.4 29.7 8.9		

Table S8 Conversion of MAN to MG catalyzed by MoO₃.

Reaction condition : 50 mg of MAN, 5 g of methanol, 50 mg of MoO₃, 1 MPa O₂, 393 K; Yields (Y.) of all products are calculated by carbon atom yields from the mannose and the corresponding carbon balance is calculated by $[1 - \text{Conv}_{\text{Retro-aldol}} + \text{Y}_{\text{DHA}} + \text{Y}_{\text{GA}} + \text{Y}_{\text{MG}}] \times 100\%$.

MoO ₃ :Au/TiO ₂	Conv. _{Retro-aldol}	Y.MGLY	Selec. _{MGLY}	Carbon
(mg:mg)	(mol%)	(C mol%)	(C mol%)	balance (mo%)
50:50	83.2	21.2	25.5	68.5
50:100	85.3	27.6	32.4	70.4
25:100	53.4	18.1	33.9	90.3

Effect of mass ratio of MoO₃ to Au/TiO₂ on the yield of MGLY in methanol.

Reaction condition: 50 mg of FRU, 5 g of methanol, 3 mg of K₂CO₃, 363 K, 1 Mpa O₂, 5 h. Yield (Y.) of MGLY is calculated by carbon atom yield from FRU. Selectivity (Selec.) of MGLY is calculated by $Y_{MGLY}/Conv_{Retro-aldol} \times 100\%$. Carbon balance is calculated by $[1 - Conv_{Retro-aldol} + Y_{MGLY} + Y_{others}] \times 100\%$, others: GLA, DHA, PYR, ML.

MoO ₃ :Au/TiO ₂	Conv. _{Retro-aldol}	Y. _{MG}	Selec. _{MG}	Carbon
(mg:mg)	(mol%)	(C mol%)	(C mol%)	balance (mol%)
50.0:100	80.1	37.1	46.3	65.0
37.5:100	79.5	36.2	45.5	70.0
25.0:100	77.4	28.9	37.3	65.4
12.5:100	74.3	27.7	37.2	71.5
37.5:80	80.2	39.2	48.9	71.8
37.5:60	72.9	28.2	38.7	73.7
37.5:40	73.6	23.2	31.5	76.8

Effect of mass ratio of MoO₃ to Au/TiO₂ on the yield of MG in methanol.

Reaction condition: 50 mg of MAN, 5 g of methanol, 393 K, 1 Mpa O₂, 4 h. Yield (Y.) of MG is calculated by carbon atom yield from MAN. Selectivity (Selec.) of MG is calculated by $Y_{MG}/Conv_{Retro-aldol} \times 100\%$. Carbon balance is calculated by $[1 - Conv_{Retro-aldol} + Y_{MG} + Y_{GA} + Y_{DHA}] \times 100\%$.

C _{FRU}	Conv. _{Retro-aldol}	Y. _{MGLY}	Selec. _{MGLY}	Carbon
(wt%)	(mol%)	(C mol%)	(C mol%)	balance (mol%)
1.0	85.3	27.6	32.4	70.4
2.0	79.7	25.2	31.6	74.8
5.0	75.3	21.7	28.8	71.6
10.0	68.9	18.3	26.6	79.7

Effect of FRU concentration on the yield of MGLY in methanol.

Reaction condition: 5 g of methanol, 50 mg of MoO₃, 100 mg of Au/TiO₂, 3 mg of K₂CO₃, 363 K, 1 Mpa O₂, 5 h. Yield (Y.) of MGLY is calculated by carbon atom yield from FRU. Selectivity (Selec.) of MGLY is calculated by $Y_{MGLY}/Conv_{Retro-aldol} \times 100\%$. Carbon balance is calculated by $[1 - Conv_{Retro-aldol} + Y_{MGLY} + Y_{others}] \times 100\%$, others: GLA, DHA, PYR, ML.

C_{MAN}	Conv. _{Retro-aldol}	Y. _{MG}	Selec. _{MG}	Carbon
(wt%)	(mol%)	(C mol%)	(C mol%)	balance (mol%)
1.0	80.2	39.2	48.9	71.8
2.0	75.7	39.8	52.6	78.7
5.0	72.5	29.1	40.1	70.7
10.0	63.9	20.7	32.4	72.6

Effect of MAN concentration on the yield of MG in methanol.

Reaction condition: 5 g of methanol, 37.5 mg of MoO₃, 80 mg of Au/TiO₂, 393 K, 1 Mpa O₂, 4 h. Yield (Y.) of MG is calculated by carbon atom yield from MAN. Selectivity (Selec.) of MG is calculated by $Y_{MG}/Conv_{Retro-aldol} \times 100\%$. Carbon balance is calculated by $[1 - Conv_{Retro-aldol} + Y_{MG} + Y_{GA} + Y_{DHA}] \times 100\%$.

Table S13

Reuse	Conv. _{Retro-aldol}	Y. _{GA}	Y. _{MG}	Selec. _{MG}	Carbon
	(mol%)	(C mol%)	(C mol%)	(C mol%)	balance (mol%)
1 st	80.2	4.0	39.2	48.9	71.8
2^{nd}	74.4	5.5	37.5	50.4	78.9
3 rd	70.3	4.9	34.2	48.6	78.5
4 th	71.6	6.7	30.7	42.9	75.1

Reuse of MoO_3 and Au/TiO_2 catalysts.

Reaction condition: 100 mg of MAN, 5 g of methanol, 37.5 mg of MoO₃, 80 mg of Au/TiO₂, 393 K, 1 Mpa O₂, 4 h. Yield (Y.) of MG is calculated by carbon atom yield from MAN. Selectivity (Selec.) of MG is calculated by $Y_{MG}/Conv_{Retro-aldol} \times 100\%$. Carbon balance is calculated by $[1 - Conv_{Retro-aldol} + Y_{MG} + Y_{GA} + Y_{DHA}] \times 100\%$.



Fig. S7. TEM images of Au/TiO $_2$ catalyst after the fourth cycle.

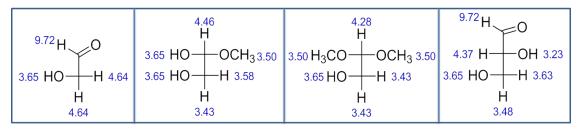


Fig. S8. Predict of ¹H-NMR shifts of GA and its hemiacetal, acetal as well as GLA.

Conversion of GA in methanol.							
time	Con. _{GA} in HPLC	Acetal product inGC					
[min]	[mol %]	[C mol %]					
40	5.5	82.1					
80	2.7	94.4					

Reaction condition: 100 mg of GA, 5 g of methanol, 463 K.