Supporting Information

Synthesis of a Cationic Polyacrylamide by Photocatalytic Surface-Initiated Method and Evaluation of Its Flocculation and Dewatering Performance: Nano-TiO₂ as Photo Initiator

Yongzhi Liu^{a, b}, Huaili Zheng^{a, b*}, Yili Wang^c, Xinyu Zheng^{a, b}, Moxi Wang^{a, b}, Jie Ren^{a, b},

Chuanliang Zhao a, b

^a Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.

^b National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, PR China.

^c College of Environmental Science and Engineering, Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.

*Corresponding author: Huaili Zheng Email: hlz6512@163.com

First author: Yongzhi Liu Email: 1571709188@qq.com

This file contains three Texts, two Table and two Figures.

Text S1. Measurement of Intrinsic Viscosity

The intrinsic viscosity of TPADs was measured by the One Point Method [28,29]. The intrinsic viscosity of TPADs was determined using Ubbelohde capillary viscometer (Shanghai Shenyi Glass Instrument Co., Ltd., China) at 30 ± 0.05 °C. The viscosity average molecular weight of the polymers was calculated according to their intrinsic viscosities. The calculation equation according to Formula (1) (GB/T 12005.10-1992), as follows:

$$M_r = 802[\eta]^{1.25}$$
 Formula (1)

In this formula, M_r is the viscosity average molecular weight, [η] is the intrinsic viscosity (mL/g).

Text S2. Calculation method of supernatant turbidity (ST) and filter cake moisture content (FCMC)

Supernatant turbidity (ST) was measured with a HACH (HACH 2100Q, American Hach Company) turbidity meter at the depth 2 cm below the liquid surface. FCMC was calculated by the Formula (3).

$$\frac{M_1 - M_2}{M_1 - M_0} \times 100\%$$
FCMC%= $\frac{M_1 - M_0}{M_1 - M_0} \times 100\%$
Formula (3)

Where M_1 is the total weight of the filter cake and crucible before drying, M_2 is the total weight of the filter cake and crucible after drying, and M_0 is the weight of the crucible.

Text S3. Calculation method of specific resistance to filtration (SRF) and sludge flocs size

The quantitative paper with a 30-50 μ m pore size was cut to 7 cm in diameter and then was putted in Buchner funnel. The raw and conditioned sludge was poured into the Buchner funnel to filter under a pressure of 0.5-0.6 MPa of vacuum filtration. The volume change of filtrate was recorded every 10 s until vacuum breaking. The SRF of sludge was calculated by the Formula (4).

$$SRF = \frac{2bPA^2}{\mu W}$$
 Formula (4)

Where SRF is the specific resistance to filtration of sludge (cm/g), P is the filtering pressure (Pa), A is the filtering area (cm²), μ is the kinetic viscosity (Pa·s), b is the slope of the filtration equation curve in the Formula (5), and W is the filter cake weight per unit volume filter (g/mL), which can be calculated by the Formula (6).

$$\frac{t}{v} = bv + a$$

Formula (5)

Where t is the filtering time (s), and v is the filtrate volume (mL).

$$W = \frac{C_0 \cdot C_b}{C_0 - C_b}$$
 Formula (6)

Where C_0 is the moisture content of the initial sludge (g/mL) and C_b is the moisture content of the filter cake (g/mL).

Sludge flocs size were measured using a laser diffraction instrument (Mastersizer, 2000; Malvern, UK).

Table S1. Physical properties of the copolymers.

Parameter

Sample

	BET ^a specific		Langmuir	Adsorption average pore		
	surface a	rea	surface	width (4V/A by BET)		
	(m^{2}/g)		area (m ² /g)	(nm)		
PAD1	0.0289		0.0327	-		
TPAD2	0.3394		0.4743	14.14688		
TPAD4	0.4513		0.6231	16.31059		
a BET: Brunauer Emmett Teller.						

Table S2. Details of used flocculant in flocculation and dewatering test.

Flocculant ^a	TiO ₂	Cationic	[η] (mL/g)	M _r
	(wt ‰)	degree		$\times 10^4$
_		(%)		
TPAD1	0.125	30	1487	740
TPAD2	0.250	30	1724	890
TPAD3	0.375	30	1690	869
TPAD4	0.500	30	1553	781
PAD1	0	30	1430	705
CPAM	0	30	1450	717

^a TPAD (1-4): poly(AM-DAC) by photocatalytic surface-initiated polymerization using nano-TiO₂ as initiator; PAD1: poly(AM-DAC) by UV-initiation using VA-044 as initiator; CPAM: commercial poly(AM-DAC).

Figure S1. Floc photographs for (a) TPAD2 and (b) CPAM (Experimental conditions: 8 mg/L of doasge, pH=7.5).

Figure S2. Sludge floc size distribution and Photographs for (a) TPAD1 and (b) PAD1 (Experimental conditions: 20 mg/L of doasge, pH=6.5).