Supporting information

Preparation of high-yield N-doped biochar from nitrogen-containing phosphate and its effective adsorption for toluene

Qiying Zhou,[†] Xia Jiang, ^{*,†,‡} Xi Li ^a, [†] Charles Q. Jia,[§] and Wenju Jiang ^{†,‡}

[†] College of Architecture and Environment, Sichuan University, Chengdu 610065,

China

[‡]National Engineering Research Center for Flue Gas Desulfurization, Chengdu

610065, China

[§] Department of Chemical Engineering & Applied Chemistry, University of Toronto,

200 College St., Toronto, Ontario M5S 3E5, Canada

*Corresponding author: Xia Jiang

Tel.: +86 28 85467800; fax: +86 28 85405613.

E-mail address: xjiang@scu.edu.cn (X. Jiang)

Fig. S1. Schematic of the fixed bed system for toluene adsorption

Fig. S2. The yields of prepared carbon with the addition of different nitrogencontaining phosphates

Fig. S3. SEM images of C-600 ((a) and (b)), and AP-600 ((c) and (d))

Fig. S4. Nitrogen adsorption-desorption isotherms of prepared carbon at 600 $^{\circ}$ C (a) and 900 $^{\circ}$ C (b)

Fig. S5. Pore size distribution of the prepared carbon

Fig. S6. High resolution XPS spectra for C 1s of the prepared carbon

Fig. S7. High resolution XPS spectra for N 1s of prepared carbon

Fig. S8. High resolution XPS spectra for P 2p of prepared carbon

Fig. S9. TG analysis of pristine stillage, mixture of tillage and APP (a) and UP (b) (TG curve (1), DTG curve (2))

NC P	Formula	N (%)	P (%)	Structural formula
AP	(NH ₄) ₃ PO ₄	28.1	20.8	$NH_4^+ \bigcup_{\substack{O^-\\NH_4^+}}^{O^-} O^- NH_4^+$
APP	$(\mathrm{NH}_4)_{n+2}\mathrm{P}_n\mathrm{O}_{3n+1}$	17.0	31.0	$\begin{array}{c} \mathrm{NH_4^+} \\ \mathrm{NH_4^+} \\ \mathrm{NH_4^+} \\ \mathrm{O} \end{array} \begin{array}{c} \mathrm{O} \\ \mathrm{NH_4^+} \end{array} \end{array}$
UP	CO(NH ₂) ₂ ·H ₃ PO ₄	17.7	19.5	HO $ P$ $-$ OH $ NH_2$

Table S1 Characteristics of nitrogen-containing phosphates

Table S2 Bulk density of the prepared carbon

Sample	Bulk density (g/cm ³)	Sample	Bulk density (g/cm ³)
AP-600	0.48	AP-900	0.32
APP-600	0.36	APP-900	0.28
UP-600	0.56	UP-900	0.45