Supporting Information

How experimental details matter. The case of a laccase-catalysed oligomerisation reaction

Keita Kashima,^{a,b} Tomoyuki Fujisaki,^{a,b} Sandra Serrano-Luginbühl,^a Abbos Khaydarov,^a Reinhard Kissner,^c Aleksandra Janošević Ležaić,^d Danica Bajuk-Bogdanović,^e Gordana Ćirić-Marjanović,^e Lukas D. Schuler,^f and Peter Walde *^a

Affiliation:

^a Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland

^b Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Ohaza-Nakakuki, Oyama, Tochigi 323-0806, Japan

^c Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland

^d University of Belgrade – Faculty of Pharmacy, Vojvode Stepe Street 450, 11221 Belgrade, Serbia

^e University of Belgrade – Faculty for Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia

^fxirrus GmbH, Buchzelgstrasse 36, 8053 Zürich, Switzerland

Corresponding Author:

*E-mail: peter.walde@mat.ethz.ch

B)

Fig. S-1. Direct comparison of the effect of chloride ions ($\approx 2.4 \text{ mM}$) on the UV/vis/NIR absorption spectra of the reaction mixture recorded during the reaction with $[TvL] \approx 2.6 \text{ nM}$, $[PADPA]_0 = 1.0 \text{ mM}$, [AOT] = 1.5 mM, $[H_2PO_4^-] + [H_3PO_4] = 0.1 \text{ M}$, pH = 3.5, and T = 25 °C. "Without Cl⁻" means the use of the chloride-free "pH=3.5 solution" (*new optimal conditions*), "with Cl⁻" means the use of the "pH=3.5 solution" containing chloride ions ([Cl⁻] $\approx 2.4 \text{ mM}$).

(A): Selected spectra taken from Fig. 2 for t = 5 h, 24 h, and 7 d.

(B) Comparison of A_{1000} vs. t.

(A)

B)

Fig. S-2. Comparison of the UV/vis/NIR absorption spectra of the two reaction mixtures recorded during the reaction with $[TvL] \approx 32 \text{ nM}$, $[PADPA]_0 = 1.0 \text{ mM}$, [AOT] = 1.5 mM, $[H_2PO_4^-] + [H_3PO_4] = 0.1 \text{ M}$, pH = 3.5, and T $\approx 25 \text{ °C}$.

(A) Use of the chloride-free "pH=3.5 solution". The grey lines are the spectra recorded after t = 10 min, 30 min, 2 h, 3 h, 4 h, 2 d, and 3d.

(B) Use of the "pH=3.5 solution" containing chloride ions (\approx 2.4 mM). These conditions were previously considered as optimal, see (Junker et al., 2014).^{S1} The grey lines are the spectra recorded after t = 10 min, 30 min, 2 h, 3 h, 4 h, 2 d, and 3d.

Fig. S-3. Stability of TvL dissolved either in deionized water (\blacksquare), in the chloride-free "pH=3.5 solution" (\bullet), or in the "pH=3.5 solution" containing chloride ions (\approx 2.4 mM) (\blacktriangle), and stored at T \approx 25 °C. For both "pH=3.5 solutions", [H₂PO₄⁻] + [H₃PO₄] = 0.1 M. The activity was measured with 0.25 mM ABTS²⁻ at pH = 3.5 and T = 25 °C, as described before (Junker et al., 2014).^{S1}

- (A) [TvL] ≈ 2.6 nM.
- (B) [TvL] ≈ 32 nM.

Fig. S-4. A: UV/vis/NIR absorption spectra of a reaction mixture recorded during the reaction with $[TvL] \approx 320 \text{ nM}$, $[PADPA]_0 = 1.0 \text{ mM}$, [AOT] = 1.5 mM, $[H_2PO_4^-] + [H_3PO_4] = 0.1 \text{ M}$, pH = 3.5, and $T \approx 25 ^{\circ}$ C. Use of chloride-free "pH=3.5 solution". B: Comparison of the UV/vis/NIR spectra for $[TvL] \approx 320 \text{ nM}$ (recorded after 1 h) – data taken from **Fig. S-4A** – and for $[TvL] \approx 2.6 \text{ nM}$ (recorded after 1 d) – data taken from **Fig. 2A**.

Fig. S-5. Example of the recorded UV/vis/NIR absorption spectrum of a reaction mixture after t = 24 h for the same conditions as described in the legend of **Fig. 3** for $[TvL] \approx 320 \text{ nM}$: $[PADPA]_0 = 1.0 \text{ mM}$, [AOT] = 1.5 mM, $[H_2PO_4^-] + [H_3PO_4] = 0.1 \text{ M}$, pH = 3.5, and T $\approx 25 \text{ °C}$; use of a chloride-free "pH=3.5 solution".

In this spectrum, the highest absorption is at $\lambda = 1060$ nm and a shoulder is present at $\lambda \approx 820$ nm. In the spectrum 2 of **Fig. 3**, the highest absorption is at $\lambda = 817$ nm and a shoulder is present at $\lambda \approx 1060$ nm. Although in both cases the spectrum in this wavelength region is dominated by at least two absorption bands centered around $\lambda \approx 1060$ nm and $\lambda \approx 820$ nm, the ratio of the two bond intensities after t = 24 h shows great variations (please compare this spectrum with spectrum 2 of **Fig. 3**). The reason for such spectral differences is not clear.

5

Fig. S-6. EPR spectrum of two reaction mixtures recorded during the reaction with $[TvL] \approx 2.6 \text{ nM}$ (A) or $[TvL] \approx 320 \text{ nM}$ (B), $[PADPA]_0 = 1.0 \text{ mM}$, [AOT] = 1.5 mM, $[H_2PO_4^-] + [H_3PO_4] = 0.1 \text{ M}$, pH = 3.5, and $T \approx 25 \text{ °C}$. Use of chloride-free "pH=3.5 solution"; v = 9.766 GHz, $g_{\text{final}} = 2.0069 \pm 0.0002$ for both records; $g_{\text{initial}} = 2.0072 \pm 0.0002$ for $[TvL] \approx 2.6 \text{ nM}$ (A).

Fig. S-7. Comparison of the changes in the integrals of the EPR spectra of the reaction mixtures recorded during the reaction, as shown in **Fig. S-6**, for $[TvL] \approx 2.6 \text{ nM}$ (1) or $[TvL] \approx 320 \text{ nM}$ (2).

Fig. S-8. Raman spectra of the two reaction mixtures recorded during the reaction at $[TvL] \approx 2.6$ nM (A) or $[TvL] \approx 320 \text{ nM}$ (B). $[PADPA]_0 = 1.0 \text{ mM}$, [AOT] = 1.5 mM, $[H_2PO_4^-] + [H_3PO_4] = 0.1 \text{ M}$ (chloride ion-free), pH = 3.5, T \approx 25 °C. Excitation wavelength: 633 nm.

The differences in the *in situ* Raman spectra related to the molecular structure of the products at various times during the reaction (from t = 1 min to t = 24 h) for the two reaction mixtures with TvL concentrations of \approx 2.6 nM and \approx 320 nM are obvious (Fig. S-8). Besides the main differences described in section 3.2.3, it is interesting to note some detailed differences during the early stages of the reaction. The earliest recorded spectra (at t = 1 min) are mutually similar, showing the same bands and indicating similarity in the structure of initial products for the two TvL concentrations. Virtually the only (but not insignificant) difference at t = 1 min is the relatively higher intensity of the $v(C-N^+)/v(C-N^{++})$ band at about 1380 / 1350 cm⁻¹ in the spectrum recorded for [TvL] \approx 2.6 nM compared to the spectrum for [TvL] ≈320 nM, indicating higher amounts of first-formed radical cations (polarons) in the case with low enzyme concentration. In the following spectra (t=5 min, 10 min), the bands due to polarons, at about 1370, 1350 and 1330 cm⁻¹, are significantly weakened for [TvL] ≈2.6 nM, and later they again strengthen. Such intensity decrease is not observed for [TvL] \approx 320 nM. For very long reaction times (t = 24 h) a significant increase in the relative intensity of the polaron band is observed for $[TvL] \approx 2.6$ nM (the peak centred at 1350 cm⁻¹ becomes one of the strongest in the spectrum), while the opposite trend is detected in the case of [TvL] \approx 320 nM. Overall, these spectral differences indicate differences in the reaction course for the two conditions used.

Fig. S-9. Comparison of the Raman spectra of the two reaction mixtures recorded after t = 1 h and t = 24 h for $[TvL \approx 2.6 \text{ nM} (top) \text{ or } [TvL] \approx 320 \text{ nM} (bottom)$. $[PADPA]_0 = 1.0 \text{ mM}$, [AOT] = 1.5 mM, $[H_2PO_4^-] + [H_3PO_4] = 0.1 \text{ M}$ (chloride ion-free), pH = 3.5, T \approx 25 °C. Excitation wavelength: 633 nm.

Fig. S-10. Comparison of the chromatograms for the HPLC-DAD analysis of the deprotonated and reduced reaction products which were extractable in MTBE (A) or $CHCl_3$ (B) at different reaction times for reactions run with $[TvL] \approx 2.6$ nM (A) or $[TvL] \approx 320$ nM (B). $[PADPA]_0 = 1.0$ mM, [AOT] = 1.5 mM, $[H_2PO_4^-] + [H_3PO_4] = 0.1$ M (chloride ion-free), pH = 3.5, T ≈ 25 °C. The relative absorbance at $\lambda = 310$ nm is plotted against the retention time.

Comments: For [TvL] = 320 nM and t = 24 h, the chromatogram consists of only a few peaks. This is due to incomplete extraction of the reaction products into the organic solvent (CHCl₃). For $[TvL] \approx$ 320 nM, the most intensive peak in the chromatogram for t = 1 h (rt \approx 32 min) is very weak in the chromatogram for t = 24 h. This indicates that the product eluting at rt \approx 32 min (linear tetraaniline) is no more present, or it could not be extracted due to strong interactions with other products present. In any case, the situation in the case of $[TvL] \approx$ 320 nM is very different from the reaction run with $[TvL] \approx 2.6 \text{ nM}$.

Fig. S-11. Comparison of the reproducibility of the chromatograms for the conditions described in the legend of **Fig. S-10** and a reaction time of t = 24 h. (A): [TvL] = 2.6 nM, extraction with MTBE; (B) [TvL] = 320 nM, extraction with CHCl₃. The relative absorbance at $\lambda = 310$ nm is plotted against the retention time.

Fig. S-12. UV/vis absorption spectra of the molecules causing the different peaks in the chromatogram of **Fig. 6A**, as obtained from the HPLC-DAD analysis, for a reaction mixture with [TvL] = 2.6 nM, t = 24 h (*new optimal conditions*), see **Table 1**.

Fig. S-13. UV/vis absorption spectra of the molecules causing the different peaks in the chromatogram of **Fig. 6B**, as obtained from the HPLC-DAD analysis, for a reaction mixture with [TvL] = 320 nM, t = 1 h, see **Table 2**.

Chemical structures – or likely chemical structures - of the molecules responsible for the peaks in the chromatograms of Fig. 6

(1)
$$H_{NH_2}$$

PADPA

PADPA·H⁺

Chemical formula: $C_{12}H_{13}N_2^+$ Calculated molecular mass: 185.1073

(PADPA)_{1.5}

(PADPA)_{1.5}·H⁺

Chemical formula: C₁₈H₁₆N₃⁺ Calculated molecular mass: 274.1339

(PADPA)₂¹ oxidized

 $(PADPA)_2^{I} oxidized \cdot H^{+}$

Chemical formula: C₂₄H₂₁N₄⁺ Calculated molecular mass: 365.1761

(PADPA)2

(PADPA)₂^I·H⁺

Chemical formula: C₂₄H₂₃N₄⁺ Calculated molecular mass: 367.1917

(PADPA)₃¹ oxidized

 $(PADPA)_{3}^{I} oxidized \cdot H^{+}$

Chemical formula: $C_{36}H_{31}N_6^+$ Calculated molecular mass: 547.2605

(PADPA)¹₂–NH₂

 $(PADPA)_2^{"}-NH_2\cdot H^+$

Chemical formula: C₂₄H₂₂N₃⁺ Calculated molecular mass: 352.1808

(PADPA)_{2.5}

(PADPA)_{2.5}·H⁺

Chemical formula: C₃₀H₂₆N₅⁺ Calculated molecular mass: 456.2183

(PADPA)₃"

(PADPA)₃^{II}·H⁺

Chemical formula: $C_{36}H_{31}N_6^+$ Calculated molecular mass: 547.2605

(PADPA)₄

(PADPA)₄·H⁺

Chemical formula: C₄₈H₄₁N₈⁺ Calculated molecular mass: 729.3449

Fig. S-14. UV/vis/NIR (A) and EPR spectra (B) of reaction mixtures, as obtained for reactions carried out at either T \approx 25 °C or T = 5 °C. [PADPA]₀ = 1.0 mM, [AOT] = 1.5 mM, [H₂PO₄⁻] + [H₃PO₄] = 0.1 M (chloride ion-free), pH = 3.5, [TvL] \approx 2.6 nM and t = 2 d. Red: T = 25 °C; blue: T = 5 °C; v = 9.769 GHz, g₅ = 2.0068 ± 0.0002, g₂₅ = 2.0069 ± 0.0002.

Remark: The lines of products obtained at T = 25 °C reaction temperature are slightly wider than those of products obtained at T = 5 °C. The reproducibility of the radical yield is also better at 5 °C.

Fig. S-15. Chromatogram for the HPLC-DAD analysis of the deprotonated and reduced reaction products, as obtained from $[PADPA]_0 = 1.0 \text{ mM}$, [AOT] = 1.5 mM, $[H_2PO_4^-] + [H_3PO_4] = 0.1 \text{ M}$ (chloride ion-free), pH = 3.5, T = 5 °C, and $[TvL] \approx 2.6 \text{ nM}$ after t = 5 d. The relative absorbance at $\lambda = 310 \text{ nm}$ is plotted against the retention time. The peaks at t = 19.61, 27.53, 32.78, 39.54, and 42.44 min correspond to PADPA, $(PADPA)_{1.5}$, $(PADPA)_2^{-1}$, $(PADPA)_3$, and $(PADPA)_2$ -NH₂; the peaks between t ≈ 54 and 58 min correspond to products with phenazine units; see Luginbühl et al. (2016).⁵²

References

- (S1) K. Junker, S. Luginbühl, M. Schüttel, L. Bertschi, R. Kissner, L. D. Schuler, B. Rakvin and P. Walde, *ACS Catal.*, 2014, **4**, 3421–3434.
- (S2) S. Luginbühl, L. Bertschi, M. Willeke, L. D. Schuler and P. Walde, *Langmuir*, 2016, **32**, 9765–9779.