Synthesis and characterization of a novel antibacterial material

containing poly (sulfobetaine) using reverse atom transfer radical

polymerization

Xiaohong Chu⁺,^{a,b}, Ming Zhang⁺,^{a,b}, Ninglin Zhou^{a,b,c*}, Fan Wu^{a,b}, Baohong Sun^{a,b}, Jian Shen^{a,b*}

^{*a*} Jiangsu Collaborative Innovation Center for biological functional materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;

^b Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China;

^c Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505, China

*Correspondence to: Tel.: +86 25 85891536 Fax: +86 25 83599188.

⁺These authors contribute equality to this work.

E-mail addresses: zhouninglin@njnu.edu.cn.

Fig. S1. ¹H NMR spectra of DMCHPS in DMSO.

Sample	Element (atom %)						Atomic ratio
	С	0	N	Si	Cl	S	O/C
DMCHPS	49.87	31.66	3.96	-	10.02	9.06	0.63
PU-Si	79.88	12.87	1.03	4.55	1.68	< 0.1	0.16
PU-Si-g-P(DMCHPS)-12h	70.43	23.97	2.80	1.95	0.86	< 0.1	0.34
PU-Si-g-P(DMCHPS)-24h	69.66	24.98	2.71	2.20	0.29	0.16	0.36
PU-Si-g-P(DMCHPS)-36h	68.15	25.99	3.11	1.98	0.78	<0.1	0.38
PU-Si-g-P(DMCHPS)-48h	68.36	25.91	3.29	1.81	0.63	< 0.1	0.38

Table S1. Elemental surface composition of PU-Si substrates determined from XPS.

Fig. S2. Total atomic ratio of O/C of PU-Si-g-P(DMSCH)-12h, PU-Si-g-P(DMSCH)-24h, PU-Si-g-P(DMSCH)-36h, PU-Si-g-P(DMSCH)-48h.

Fig. S3. SEM pictures of bacterial adhesion for (a, a') PU-Si-g-P(DMSCH)-12h, (b, b') PU-Si-g-P(DMSCH)-24h, (c, c') PU-Si-g-P(DMSCH)-36h, (d, d') PU-Si-g-P(DMSCH)-48h, (e, e') PU-Si against *E. coli*.

Fig. S4. Fluorescent images of HEK293 cells for (a, a') PU, (b, b') PU-Si-g-P(DMCHPS)-12 h, (c, c') PU-Si-g-P(DMCHPS)-24 h, (d, d') PU-Si-g-P(DMCHPS)-36 h, (e, e') PU-Si-g-P(DMCHPS)-48 h, which a-e) and a'-e') are HEK293 cells culture on modified PU films for 24 h and 48 h.